Handbook Of Biomimetics And Bioinspiration Biologically Driven Engineering Of Materials Processes Devices And Systems In 3 Volumes


Download Handbook Of Biomimetics And Bioinspiration Biologically Driven Engineering Of Materials Processes Devices And Systems In 3 Volumes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Biomimetics And Bioinspiration Biologically Driven Engineering Of Materials Processes Devices And Systems In 3 Volumes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Handbook Of Biomimetics And Bioinspiration: Biologically-driven Engineering Of Materials, Processes, Devices, And Systems (In 3 Volumes)


Handbook Of Biomimetics And Bioinspiration: Biologically-driven Engineering Of Materials, Processes, Devices, And Systems (In 3 Volumes)

Author: Esmaiel Jabbari

language: en

Publisher: World Scientific

Release Date: 2014-04-29


DOWNLOAD





Global warming, pollution, food and water shortage, cyberspace insecurity, over-population, land erosion, and an overburdened health care system are major issues facing the human race and our planet. These challenges have presented a mandate to develop “natural” or “green” technologies using nature and the living system as a guide to rationally design processes, devices, and systems. This approach has given rise to a new paradigm, one in which innovation goes hand-in-hand with less waste, less pollution, and less invasiveness to life on earth. Bioinspiration has also led to the development of technologies that mimic the hierarchical complexity of biological systems, leading to novel highly efficient, more reliable multifunctional materials, devices, and systems that can perform multiple tasks at one time. This multi-volume handbook focuses on the application of biomimetics and bioinspiration in medicine and engineering to produce miniaturized multi-functional materials, devices, and systems to perform complex tasks. Our understanding of complex biological systems at different length scales has increased dramatically as our ability to observe nature has expanded from macro to molecular scale, leading to the rational biologically-driven design to find solution to technological problems in medicine and engineering.The following three-volume set covers the fields of bioinspired materials, electromechanical systems developed from concepts inspired by nature, and tissue models respectively.The first volume focuses on the rational design of nano- and micro-structured hierarchical materials inspired by the relevant characteristics in living systems, such as the self-cleaning ability of lotus leaves and cicadas' wings; the superior walking ability of water striders; the anti-fogging function of mosquitoes' eyes; the water-collecting ability of Namib Desert Beetles and spider silk; the high adhesivity of geckos' feet and rose petals; the high adhesivity of mussels in wet aquatic environments; the anisotropic wetting of butterflies' wings; the anti-reflection capabilities of cicadas' wings; the self-cleaning functionality of fish scales; shape anisotropy of intracellular particles; the dielectric properties of muscles; the light spectral characteristics of plant leaves; the regeneration and self-healing ability of earthworms; the self-repairing ability of lotus leaves; the broadband reflectivity of moths' eyes; the multivalent binding, self-assembly and responsiveness of cellular systems; the biomineral formation in bacteria, plants, invertebrates, and vertebrates; the multi-layer structure of skin; the organization of tissue fibers; DNA structures with metal-mediated artificial base pairs; and the anisotropic microstructure of jellyfish mesogloea. In this volume, sensor and microfluidic technologies combined with surface patterning are explored for the diagnosis and monitoring of diseases. The high throughput combinatorial testing of biomaterials in regenerative medicine is also covered.The second volume presents nature-oriented studies and developments in the field of electromechanical devices and systems. These include actuators and robots based on the movement of muscles, algal antenna and photoreception; the non-imaging light sensing system of sea stars; the optical system of insect ocellus; smart nanochannels and pumps in cell membranes; neuromuscular and sensory devices that mimic the architecture of peripheral nervous system; olfaction-based odor sensing; cilia-mimetic microfluidic systems; the infrared sensory system of pyrophilous insects; ecologically inspired multizone temperature control systems; cochlea and surface acoustic wave resonators; crickets' cercal system and flow sensing abilities; locusts' wings and flapping micro air vehicles; the visual motion sensing of flying insects; hearing aid devices based on the human cochlea; the geometric perception of tortoises and pigeons; the organic matter sensing capability of cats and dogs; and the silent flight of rats. The third volume features engineered models of biological tissues. These include engineered matrices to mimic cancer stem cell niches; in vitro models for bone regeneration; models of muscle tissue that enable the study of cardiac infarction and myopathy; 3D models for the differentiation of embryonic stem cells; bioreactors for in vitro cultivation of mammalian cells; human lung, liver and heart tissue models; topographically-defined cell culture models; ECM mimetic tissue printing; biomimetic constructs for regeneration of soft tissues; and engineered constructs for the regeneration of musculoskeletal and corneal tissue.This three-volume set is a must-have for anyone keen to understand the complexity of biological systems and how that complexity can be mimicked to engineer novel materials, devices and systems to solve pressing technological challenges of the twenty-first century.Key Features:The only handbook that covers all aspects of biomimetics and bioinspiration, including materials, mechanics, signaling and informaticsContains 248 colored figures

Handbook of Biomimetics and Bioinspiration


Handbook of Biomimetics and Bioinspiration

Author: Esmaiel Jabbari

language: en

Publisher: World Scientific

Release Date: 2014


DOWNLOAD





self-assembly and responsiveness of cellular systems; the biomineral formation in bacteria, plants, invertebrates, and vertebrates; the multi-layer structure of skin; the organization of tissue fibers; DNA structures with metal-mediated artificial base pairs; and the anisotropic microstructure of jellyfish mesogloea. In this volume, sensor and microfluidic technologies combined with surface patterning are explored for the diagnosis and monitoring of diseases. The high throughput combinatorial testing of biomaterials in regenerative medicine is also covered. The second volume presents nature-oriented studies and developments in the field of electromechanical devices and systems.

Encyclopedia of the Anthropocene


Encyclopedia of the Anthropocene

Author:

language: en

Publisher: Elsevier

Release Date: 2017-11-27


DOWNLOAD





Encyclopedia of the Anthropocene, Five Volume Set presents a currency-based, global synthesis cataloguing the impact of humanity’s global ecological footprint. Covering a multitude of aspects related to Climate Change, Biodiversity, Contaminants, Geological, Energy and Ethics, leading scientists provide foundational essays that enable researchers to define and scrutinize information, ideas, relationships, meanings and ideas within the Anthropocene concept. Questions widely debated among scientists, humanists, conservationists, politicians and others are included, providing discussion on when the Anthropocene began, what to call it, whether it should be considered an official geological epoch, whether it can be contained in time, and how it will affect future generations. Although the idea that humanity has driven the planet into a new geological epoch has been around since the dawn of the 20th century, the term ‘Anthropocene’ was only first used by ecologist Eugene Stoermer in the 1980s, and hence popularized in its current meaning by atmospheric chemist Paul Crutzen in 2000. Presents comprehensive and systematic coverage of topics related to the Anthropocene, with a focus on the Geosciences and Environmental science Includes point-counterpoint articles debating key aspects of the Anthropocene, giving users an even-handed navigation of this complex area Provides historic, seminal papers and essays from leading scientists and philosophers who demonstrate changes in the Anthropocene concept over time