Handbook Of Big Data Analytics And Forensics

Download Handbook Of Big Data Analytics And Forensics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Big Data Analytics And Forensics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook of Big Data Analytics and Forensics

Author: Kim-Kwang Raymond Choo
language: en
Publisher: Springer Nature
Release Date: 2021-12-02
This handbook discusses challenges and limitations in existing solutions, and presents state-of-the-art advances from both academia and industry, in big data analytics and digital forensics. The second chapter comprehensively reviews IoT security, privacy, and forensics literature, focusing on IoT and unmanned aerial vehicles (UAVs). The authors propose a deep learning-based approach to process cloud’s log data and mitigate enumeration attacks in the third chapter. The fourth chapter proposes a robust fuzzy learning model to protect IT-based infrastructure against advanced persistent threat (APT) campaigns. Advanced and fair clustering approach for industrial data, which is capable of training with huge volume of data in a close to linear time is introduced in the fifth chapter, as well as offering an adaptive deep learning model to detect cyberattacks targeting cyber physical systems (CPS) covered in the sixth chapter. The authors evaluate the performance of unsupervised machine learning for detecting cyberattacks against industrial control systems (ICS) in chapter 7, and the next chapter presents a robust fuzzy Bayesian approach for ICS’s cyber threat hunting. This handbook also evaluates the performance of supervised machine learning methods in identifying cyberattacks against CPS. The performance of a scalable clustering algorithm for CPS’s cyber threat hunting and the usefulness of machine learning algorithms for MacOS malware detection are respectively evaluated. This handbook continues with evaluating the performance of various machine learning techniques to detect the Internet of Things malware. The authors demonstrate how MacOSX cyberattacks can be detected using state-of-the-art machine learning models. In order to identify credit card frauds, the fifteenth chapter introduces a hybrid model. In the sixteenth chapter, the editors propose a model that leverages natural language processing techniques for generating a mapping between APT-related reports and cyber kill chain. A deep learning-based approach to detect ransomware is introduced, as well as a proposed clustering approach to detect IoT malware in the last two chapters. This handbook primarily targets professionals and scientists working in Big Data, Digital Forensics, Machine Learning, Cyber Security Cyber Threat Analytics and Cyber Threat Hunting as a reference book. Advanced level-students and researchers studying and working in Computer systems, Computer networks and Artificial intelligence will also find this reference useful.
Handbook of Big Data and IoT Security

This handbook provides an overarching view of cyber security and digital forensic challenges related to big data and IoT environment, prior to reviewing existing data mining solutions and their potential application in big data context, and existing authentication and access control for IoT devices. An IoT access control scheme and an IoT forensic framework is also presented in this book, and it explains how the IoT forensic framework can be used to guide investigation of a popular cloud storage service. A distributed file system forensic approach is also presented, which is used to guide the investigation of Ceph. Minecraft, a Massively Multiplayer Online Game, and the Hadoop distributed file system environment are also forensically studied and their findings reported in this book. A forensic IoT source camera identification algorithm is introduced, which uses the camera's sensor pattern noise from the captured image. In addition to the IoT access control and forensic frameworks, this handbook covers a cyber defense triage process for nine advanced persistent threat (APT) groups targeting IoT infrastructure, namely: APT1, Molerats, Silent Chollima, Shell Crew, NetTraveler, ProjectSauron, CopyKittens, Volatile Cedar and Transparent Tribe. The characteristics of remote-controlled real-world Trojans using the Cyber Kill Chain are also examined. It introduces a method to leverage different crashes discovered from two fuzzing approaches, which can be used to enhance the effectiveness of fuzzers. Cloud computing is also often associated with IoT and big data (e.g., cloud-enabled IoT systems), and hence a survey of the cloud security literature and a survey of botnet detection approaches are presented in the book. Finally, game security solutions are studied and explained how one may circumvent such solutions. This handbook targets the security, privacy and forensics research community, and big data research community, including policy makers and government agencies, public and private organizations policy makers. Undergraduate and postgraduate students enrolled in cyber security and forensic programs will also find this handbook useful as a reference.
Handbook of Research on Cloud Infrastructures for Big Data Analytics

Clouds are being positioned as the next-generation consolidated, centralized, yet federated IT infrastructure for hosting all kinds of IT platforms and for deploying, maintaining, and managing a wider variety of personal, as well as professional applications and services. Handbook of Research on Cloud Infrastructures for Big Data Analytics focuses exclusively on the topic of cloud-sponsored big data analytics for creating flexible and futuristic organizations. This book helps researchers and practitioners, as well as business entrepreneurs, to make informed decisions and consider appropriate action to simplify and streamline the arduous journey towards smarter enterprises.