Handbook Of Analytic Operator Theory

Download Handbook Of Analytic Operator Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Analytic Operator Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook of Analytic Operator Theory

This handbook concerns the subject of holomorphic function spaces and operators acting on them. Topics include Bergman spaces, Hardy spaces, Besov/Sobolev spaces, Fock spaces, and the space of Dirichlet series. Operators discussed in the book include Toeplitz operators, Hankel operators, composition operators, and Cowen-Douglas class operators
Handbook of Analytic Operator Theory

Handbook of Analytic Operator Theory thoroughly covers the subject of holomorphic function spaces and operators acting on them. The spaces covered include Bergman spaces, Hardy spaces, Fock spaces and the Drury-Averson space. Operators discussed in the book include Toeplitz operators, Hankel operators, composition operators, and Cowen-Douglas class operators. The volume consists of eleven articles in the general area of analytic function spaces and operators on them. Each contributor focuses on one particular topic, for example, operator theory on the Drury-Aversson space, and presents the material in the form of a survey paper which contains all the major results in the area and includes all relevant references. The overalp between this volume and existing books in the area is minimal. The material on two-variable weighted shifts by Curto, the Drury-Averson space by Fang and Xia, the Cowen-Douglas class by Misra, and operator theory on the bi-disk by Yang has never appeared in book form before. Features: The editor of the handbook is a widely known and published researcher on this topic The handbook's contributors are a who's=who of top researchers in the area The first contributed volume on these diverse topics
Handbook of Homotopy Theory

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.