Handbook Of Accelerator Physics And Engineering


Download Handbook Of Accelerator Physics And Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Accelerator Physics And Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Handbook of Accelerator Physics and Engineering


Handbook of Accelerator Physics and Engineering

Author: Alexander Wu Chao

language: en

Publisher: World Scientific

Release Date: 2013


DOWNLOAD





Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world''s most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.

Handbook Of Accelerator Physics And Engineering (3rd Printing)


Handbook Of Accelerator Physics And Engineering (3rd Printing)

Author: Maury Tigner

language: en

Publisher: World Scientific

Release Date: 1999-03-26


DOWNLOAD





Edited by internationally recognized authorities in the field, this expanded edition of the bestselling Handbook first published in 1999 is aimed at the design and operation of modern accelerators including Linacs, Synchrotrons and Storage Rings. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of 2200 equations, 345 illustrations and 185 tables, here one will find, in addition to the common formulae of previous compilations, hard to find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deals with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam and intrabeam interactions. The impedance concept and calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations deals with orbit error assessment and correction. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.

Handbook Of Accelerator Physics And Engineering (Third Edition)


Handbook Of Accelerator Physics And Engineering (Third Edition)

Author: Alexander Wu Chao

language: en

Publisher: World Scientific

Release Date: 2023-02-02


DOWNLOAD





Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing many new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to common formulae of previous compilations, hard to find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practioners of the art and science of accelerators.The seven chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities due to the various interactions mentioned. A chapter on operational considerations including discussions on the assessment and correction of orbit and optics errors, realtime feedbacks, generation of short photon pulses, bunch compression, phase-space exchange, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cryogenic vacuum systems, steady state microbuching, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes, machine learning, multiple frequency rf systems, FEL seeding, ultrafast electron diffraction, and Gamma Factory. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement, including undulators, and acceleration (both normal and superconducting) receive detailed treatment in a sub-systems chapter, beam measurement and apparatus being treated therein as well.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.