Hamiltonian Monte Carlo Methods In Machine Learning


Download Hamiltonian Monte Carlo Methods In Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hamiltonian Monte Carlo Methods In Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hamiltonian Monte Carlo Methods in Machine Learning


Hamiltonian Monte Carlo Methods in Machine Learning

Author: Tshilidzi Marwala

language: en

Publisher: Elsevier

Release Date: 2023-02-03


DOWNLOAD





Hamiltonian Monte Carlo Methods in Machine Learning introduces methods for optimal tuning of HMC parameters, along with an introduction of Shadow and Non-canonical HMC methods with improvements and speedup. Lastly, the authors address the critical issues of variance reduction for parameter estimates of numerous HMC based samplers. The book offers a comprehensive introduction to Hamiltonian Monte Carlo methods and provides a cutting-edge exposition of the current pathologies of HMC-based methods in both tuning, scaling and sampling complex real-world posteriors. These are mainly in the scaling of inference (e.g., Deep Neural Networks), tuning of performance-sensitive sampling parameters and high sample autocorrelation. Other sections provide numerous solutions to potential pitfalls, presenting advanced HMC methods with applications in renewable energy, finance and image classification for biomedical applications. Readers will get acquainted with both HMC sampling theory and algorithm implementation. - Provides in-depth analysis for conducting optimal tuning of Hamiltonian Monte Carlo (HMC) parameters - Presents readers with an introduction and improvements on Shadow HMC methods as well as non-canonical HMC methods - Demonstrates how to perform variance reduction for numerous HMC-based samplers - Includes source code from applications and algorithms

Bayesian Machine Learning in Quantitative Finance


Bayesian Machine Learning in Quantitative Finance

Author: Wilson Tsakane Mongwe

language: en

Publisher: Springer Nature

Release Date: 2025-07-23


DOWNLOAD





This book offers a comprehensive discussion of the Bayesian inference framework and demonstrates why this probabilistic approach is ideal for tackling the various modelling problems within quantitative finance. It demonstrates how advanced Bayesian machine learning techniques can be applied within financial engineering, investment portfolio management, insurance, municipal finance management as well as banking. The book covers a broad range of modelling approaches, including Bayesian neural networks, Gaussian processes and Markov Chain Monte Carlo methods. It also discusses the utility of Bayesian inference in quantitative finance and discusses future research goals in the applications of Bayesian machine learning in quantitative finance. Chapters are rooted in the theory of quantitative finance and machine learning while also outlining a range of practical considerations for implementing Bayesian techniques into real-world quantitative finance problems. This book is ideal for graduate researchers and practitioners at the intersection of machine learning and quantitative finance, as well as those working in computational statistics and computer science more broadly.

Machine Learning and Knowledge Discovery in Databases


Machine Learning and Knowledge Discovery in Databases

Author: Paolo Frasconi

language: en

Publisher: Springer

Release Date: 2016-09-03


DOWNLOAD





The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.