Guidelines For Applying Cohesive Models To The Damage Behaviour Of Engineering Materials And Structures


Download Guidelines For Applying Cohesive Models To The Damage Behaviour Of Engineering Materials And Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Guidelines For Applying Cohesive Models To The Damage Behaviour Of Engineering Materials And Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures


Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures

Author: Karl-Heinz Schwalbe

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-07-18


DOWNLOAD





This brief provides guidance for the application of cohesive models to determine damage and fracture in materials and structural components. This can be done for configurations with or without a pre-existing crack. Although the brief addresses structural behaviour, the methods described herein may also be applied to any deformation induced material damage and failure, e.g. those occurring during manufacturing processes. The methods described are applicable to the behaviour of ductile metallic materials and structural components made thereof. Hints are also given for applying the cohesive model to other materials.

Advances in Material Property Characterization using Small Punch Tests


Advances in Material Property Characterization using Small Punch Tests

Author: Bijan Kumar Dutta

language: en

Publisher: CRC Press

Release Date: 2024-11-08


DOWNLOAD





The small punch test (SPT) is useful to calculate changes in the tensile and fracture properties of structural materials during the service life of the materials of plant components. This book compiles advances in the development of correlations to calculate mechanical properties of the materials using SPT data. New correlations have been developed using hybrid methodology involving analytical and experimental data. The newly developed correlations have been tested conducting case studies on SPT and pre- cracked/ notched SPT (p- SPT) specimens. The eventual applications of all the new correlations have been demonstrated by conducting a real- life case study involving degradation of structural material from ductile to semi- brittle state due to aging. Features: • Presents exclusive material on the remnant life assessment of in- service materials using SPTs. • Assesses the fracture toughness of ductile materials using the experimentally measured biaxial fracture strain. • Provides new equations to calculate the yield and ultimate stresses of copper and titanium alloys using measured SPT data. • Explores functions to correlate the load- displacement data of p- SPT specimens with fracture properties. • Includes case studies with direct relevance to the degradation of plant materials. This book is aimed at researchers, professionals, and graduate students in materials science and engineering, mechanical property characterization and testing, and small- scale experimentation. It is expected that the advanced methodology presented in this book to evaluate changes in the properties of aged materials during the service life using SPT data are useful to designers for safety evaluation and also to calculate the remaining service life of industrial components for life extension studies.

Computational Modelling of Concrete and Concrete Structures


Computational Modelling of Concrete and Concrete Structures

Author: Günther Meschke

language: en

Publisher: CRC Press

Release Date: 2022-05-22


DOWNLOAD





Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.