Guaranteed Accuracy In Numerical Linear Algebra


Download Guaranteed Accuracy In Numerical Linear Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Guaranteed Accuracy In Numerical Linear Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Guaranteed Accuracy in Numerical Linear Algebra


Guaranteed Accuracy in Numerical Linear Algebra

Author: S.K. Godunov

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-14


DOWNLOAD





There exists a vast literature on numerical methods of linear algebra. In our bibliography list, which is by far not complete, we included some monographs on the subject [46], [15], [32], [39], [11], [21]. The present book is devoted to the theory of algorithms for a single problem of linear algebra, namely, for the problem of solving systems of linear equations with non-full-rank matrix of coefficients. The solution of this problem splits into many steps, the detailed discussion of which are interest ing problems on their own (bidiagonalization of matrices, computation of singular values and eigenvalues, procedures of deflation of singular values, etc. ). Moreover, the theory of algorithms for solutions of the symmetric eigenvalues problem is closely related to the theory of solv ing linear systems (Householder's algorithms of bidiagonalization and tridiagonalization, eigenvalues and singular values, etc. ). It should be stressed that in this book we discuss algorithms which to computer programs having the virtue that the accuracy of com lead putations is guaranteed. As far as the final program product is con cerned, this means that the user always finds an unambiguous solution of his problem. This solution might be of two kinds: 1. Solution of the problem with an estimate of errors, where abso lutely all errors of input data and machine round-offs are taken into account. 2.

Guaranteed Accuracy in Numerical Linear Algebra


Guaranteed Accuracy in Numerical Linear Algebra

Author: S.K. Godunov

language: en

Publisher: Springer Science & Business Media

Release Date: 1993-06-30


DOWNLOAD





There exists a vast literature on numerical methods of linear algebra. In our bibliography list, which is by far not complete, we included some monographs on the subject [46], [15], [32], [39], [11], [21]. The present book is devoted to the theory of algorithms for a single problem of linear algebra, namely, for the problem of solving systems of linear equations with non-full-rank matrix of coefficients. The solution of this problem splits into many steps, the detailed discussion of which are interest ing problems on their own (bidiagonalization of matrices, computation of singular values and eigenvalues, procedures of deflation of singular values, etc. ). Moreover, the theory of algorithms for solutions of the symmetric eigenvalues problem is closely related to the theory of solv ing linear systems (Householder's algorithms of bidiagonalization and tridiagonalization, eigenvalues and singular values, etc. ). It should be stressed that in this book we discuss algorithms which to computer programs having the virtue that the accuracy of com lead putations is guaranteed. As far as the final program product is con cerned, this means that the user always finds an unambiguous solution of his problem. This solution might be of two kinds: 1. Solution of the problem with an estimate of errors, where abso lutely all errors of input data and machine round-offs are taken into account. 2.

Lectures on Finite Precision Computations


Lectures on Finite Precision Computations

Author: Francoise Chaitin-Chatelin

language: en

Publisher: SIAM

Release Date: 1996-01-01


DOWNLOAD





Finite precision computations are at the heart of the daily activities of many engineers and researchers in all branches of applied mathematics. Written in an informal style, the book combines techniques from engineering and mathematics to describe the rigorous and novel theory of computability in finite precision. In the challenging cases of nonlinear problems, theoretical analysis is supplemented by software tools to explore the stability on the computer.