Green S Functions And Infinite Products

Download Green S Functions And Infinite Products PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Green S Functions And Infinite Products book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Green's Functions and Infinite Products

Author: Yuri A. Melnikov
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-08-30
Green's Functions and Infinite Products provides a thorough introduction to the classical subjects of the construction of Green's functions for the two-dimensional Laplace equation and the infinite product representation of elementary functions. Every chapter begins with a review guide, outlining the basic concepts covered. A set of carefully designed challenging exercises is available at the end of each chapter to provide the reader with the opportunity to explore the concepts in more detail. Hints, comments, and answers to most of those exercises can be found at the end of the text. In addition, several illustrative examples are offered at the end of most sections. This text is intended for an elective graduate course or seminar within the scope of either pure or applied mathematics.
Green's Functions

Author: Yuri A. Melnikov
language: en
Publisher: Walter de Gruyter
Release Date: 2012-04-02
Green's functions represent one of the classical and widely used issues in the area of differential equations. This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. The book is attractive for practical needs: It contains many easily computable or computer friendly representations of Green's functions, includes all the standard Green's functions and many novel ones, and provides innovative and new approaches that might lead to Green's functions. The book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations.
Green's Functions with Applications

Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then presents Green’s functions for each class of differential equation (ordinary differential, wave, heat, and Helmholtz equations) according to the number of spatial dimensions and the geometry of the domain. Detailing step-by-step methods for finding and computing Green’s functions, each chapter contains a special section devoted to topics where Green’s functions particularly are useful. For example, in the case of the wave equation, Green’s functions are beneficial in describing diffraction and waves. To aid readers in developing practical skills for finding Green’s functions, worked examples, problem sets, and illustrations from acoustics, applied mechanics, antennas, and the stability of fluids and plasmas are featured throughout the text. A new chapter on numerical methods closes the book. Included solutions and hundreds of references to the literature on the construction and use of Green's functions make Green’s Functions with Applications, Second Edition a valuable sourcebook for practitioners as well as graduate students in the sciences and engineering.