Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158


Download Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)


Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)

Author: Jean Bourgain

language: en

Publisher: Princeton University Press

Release Date: 2005


DOWNLOAD





This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art."

Green's Function Estimates for Lattice Schrödinger Operators and Applications


Green's Function Estimates for Lattice Schrödinger Operators and Applications

Author: Jean Bourgain

language: en

Publisher: Princeton University Press

Release Date: 2004-11-01


DOWNLOAD





This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art."

Analysis at Large


Analysis at Large

Author: Artur Avila

language: en

Publisher: Springer Nature

Release Date: 2022-11-01


DOWNLOAD





​Analysis at Large is dedicated to Jean Bourgain whose research has deeply influenced the mathematics discipline, particularly in analysis and its interconnections with other fields. In this volume, the contributions made by renowned experts present both research and surveys on a wide spectrum of subjects, each of which pay tribute to a true mathematical pioneer. Examples of topics discussed in this book include Bourgain’s discretized sum-product theorem, his work in nonlinear dispersive equations, the slicing problem by Bourgain, harmonious sets, the joint spectral radius, equidistribution of affine random walks, Cartan covers and doubling Bernstein type inequalities, a weighted Prékopa-Leindler inequality and sumsets with quasicubes, the fractal uncertainty principle for the Walsh-Fourier transform, the continuous formulation of shallow neural networks as Wasserstein-type gradient flows, logarithmic quantum dynamical bounds for arithmetically defined ergodic Schrödinger operators, polynomial equations in subgroups, trace sets of restricted continued fraction semigroups, exponential sums, twisted multiplicativity and moments, the ternary Goldbach problem, as well as the multiplicative group generated by two primes in Z/QZ. It is hoped that this volume will inspire further research in the areas of analysis treated in this book and also provide direction and guidance for upcoming developments in this essential subject of mathematics.