Graphical Models In Applied Multivariate Statistics

Download Graphical Models In Applied Multivariate Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graphical Models In Applied Multivariate Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Graphical Models in Applied Multivariate Statistics

Graphical models--a subset of log-linear models--reveal the interrelationships between multiple variables and features of the underlying conditional independence. Following the theorem-proof-remarks format, this introduction to the use of graphical models in the description and modeling of multivariate systems covers conditional independence, several types of independence graphs, Gaussian models, issues in model selection, regression and decomposition. Many numerical examples and exercises with solutions are included.
Handbook of Graphical Models

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.