Graphene Field Effect Transistors For High Performance Flexible Nanoelectronics

Download Graphene Field Effect Transistors For High Performance Flexible Nanoelectronics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graphene Field Effect Transistors For High Performance Flexible Nanoelectronics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Graphene Field Effect Transistors for High Performance Flexible Nanoelectronics

Despite the widespread interest in graphene electronics over the last decade, high-performance graphene field-effect transistors (GFETs) on flexible substrates have been rarely achieved, even though this atomic sheet is widely understood to have greater prospects for flexible electronic systems. In this work, we investigate the realization of high-performance graphene field effect transistors implemented on flexible plastic substrates. The optimum device structure for high-mobility and high-bendability is suggested with experimental comparison among diverse structures including top-gate GFETs (TG-GFETs), single/multi-finger embedded-gate GFETs with high-k dielectrics (EG-highk/GFETs), and embedded-gate GFETs with hexagonal boron nitride (h-BN) dielectrics. Flexible graphene transistors with high-k dielectric afforded intrinsic gain, maximum carrier mobility of 8,000 cm2/V·s, and importantly 32 GHz cut-off frequency. Mechanical studies reveal robust transistor performance under repeated bending down to 0.7 mm bending radius whose tensile strain corresponds to 8.6%. Passivation techniques, with robust mechanical and chemical protection in order to operate under harsh environments, for embedded-gate structures are also covered. The integration of functional coatings such as highly hydrophobic fluoropolymers combined with the self-passivation properties of the polyimide substrate provides water-resistant protection without compromising flexibility, which is an important advancement for the realization of future robust flexible systems based on graphene.
2D Nanoelectronics

This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.
2D Materials for Nanoelectronics

Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris