Graph Partitioning Metis


Download Graph Partitioning Metis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graph Partitioning Metis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Graph Partitioning


Graph Partitioning

Author: Charles-Edmond Bichot

language: en

Publisher: John Wiley & Sons

Release Date: 2013-01-24


DOWNLOAD





Graph partitioning is a theoretical subject with applications in many areas, principally: numerical analysis, programs mapping onto parallel architectures, image segmentation, VLSI design. During the last 40 years, the literature has strongly increased and big improvements have been made. This book brings together the knowledge accumulated during many years to extract both theoretical foundations of graph partitioning and its main applications.

Graph Partitioning and Graph Clustering


Graph Partitioning and Graph Clustering

Author: David A. Bader

language: en

Publisher: American Mathematical Soc.

Release Date: 2013-03-18


DOWNLOAD





Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.

Parallel Processing and Applied Mathematics


Parallel Processing and Applied Mathematics

Author: Roman Wyrzykowski

language: en

Publisher: Springer Nature

Release Date: 2020-03-19


DOWNLOAD





The two-volume set LNCS 12043 and 12044 constitutes revised selected papers from the 13th International Conference on Parallel Processing and Applied Mathematics, PPAM 2019, held in Bialystok, Poland, in September 2019. The 91 regular papers presented in these volumes were selected from 161 submissions. For regular tracks of the conference, 41 papers were selected from 89 submissions. The papers were organized in topical sections named as follows: Part I: numerical algorithms and parallel scientific computing; emerging HPC architectures; performance analysis and scheduling in HPC systems; environments and frameworks for parallel/distributed/cloud computing; applications of parallel computing; parallel non-numerical algorithms; soft computing with applications; special session on GPU computing; special session on parallel matrix factorizations. Part II: workshop on language-based parallel programming models (WLPP 2019); workshop on models algorithms and methodologies for hybrid parallelism in new HPC systems; workshop on power and energy aspects of computations (PEAC 2019); special session on tools for energy efficient computing; workshop on scheduling for parallel computing (SPC 2019); workshop on applied high performance numerical algorithms for PDEs; minisymposium on HPC applications in physical sciences; minisymposium on high performance computing interval methods; workshop on complex collective systems. Chapters "Parallel Adaptive Cross Approximation for the Multi-trace Formulation of Scattering Problems" and "A High-Order Discontinuous Galerkin Solver with Dynamic Adaptive Mesh Refinement to Simulate Cloud Formation Processes" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.