Graph Partitioning And Graph Clustering

Download Graph Partitioning And Graph Clustering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graph Partitioning And Graph Clustering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Graph Partitioning and Graph Clustering

Author: David A. Bader
language: en
Publisher: American Mathematical Soc.
Release Date: 2013-03-18
Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.
Algebraic Graph Algorithms

This textbook discusses the design and implementation of basic algebraic graph algorithms, and algebraic graph algorithms for complex networks, employing matroids whenever possible. The text describes the design of a simple parallel matrix algorithm kernel that can be used for parallel processing of algebraic graph algorithms. Example code is presented in pseudocode, together with case studies in Python and MPI. The text assumes readers have a background in graph theory and/or graph algorithms.
Graph-Based Clustering and Data Visualization Algorithms

Author: Ágnes Vathy-Fogarassy
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-05-24
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.