Global Optimization With Non Convex Constraints

Download Global Optimization With Non Convex Constraints PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Global Optimization With Non Convex Constraints book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Global Optimization with Non-Convex Constraints

Author: Roman G. Strongin
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-09
Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high effi.ciency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the pro bations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample op tions and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natu ral consequence of the raising complexity of these objects, greatly com plicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computer aided simulation of an object's behavior, based on numerical experiments with its mathematical model.
Convex Optimization

Author: Stephen P. Boyd
language: en
Publisher: Cambridge University Press
Release Date: 2004-03-08
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Deterministic Global Optimization

Author: Christodoulos A. Floudas
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
The vast majority of important applications in science, engineering and applied science are characterized by the existence of multiple minima and maxima, as well as first, second and higher order saddle points. The area of Deterministic Global Optimization introduces theoretical, algorithmic and computational ad vances that (i) address the computation and characterization of global minima and maxima, (ii) determine valid lower and upper bounds on the global minima and maxima, and (iii) address the enclosure of all solutions of nonlinear con strained systems of equations. Global optimization applications are widespread in all disciplines and they range from atomistic or molecular level to process and product level representations. The primary goal of this book is three fold : first, to introduce the reader to the basics of deterministic global optimization; second, to present important theoretical and algorithmic advances for several classes of mathematical prob lems that include biconvex and bilinear; problems, signomial problems, general twice differentiable nonlinear problems, mixed integer nonlinear problems, and the enclosure of all solutions of nonlinear constrained systems of equations; and third, to tie the theory and methods together with a variety of important applications.