Geometry Of Cauchy Riemann Submanifolds

Download Geometry Of Cauchy Riemann Submanifolds PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry Of Cauchy Riemann Submanifolds book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geometry of Cauchy-Riemann Submanifolds

This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.
Geometry of Submanifolds and Applications

This book features chapters written by renowned scientists from various parts of the world, providing an up-to-date survey of submanifold theory, spanning diverse topics and applications. The book covers a wide range of topics such as Chen–Ricci inequalities in differential geometry, optimal inequalities for Casorati curvatures in quaternion geometry, conformal η-Ricci–Yamabe solitons, submersion on statistical metallic structure, solitons in f(R, T)-gravity, metric-affine geometry, generalized Wintgen inequalities, tangent bundles, and Lagrangian submanifolds. Moreover, the book showcases the latest findings on Pythagorean submanifolds and submanifolds of four-dimensional f-manifolds. The chapters in this book delve into numerous problems and conjectures on submanifolds, providing valuable insights for scientists, educators, and graduate students looking to stay updated with the latest developments in the field. With its comprehensive coverage and detailed explanations, this book is an essential resource for anyone interested in submanifold theory.
Foliations in Cauchy-Riemann Geometry

Author: Elisabetta Barletta
language: en
Publisher: American Mathematical Soc.
Release Date: 2007
The authors study the relationship between foliation theory and differential geometry and analysis on Cauchy-Riemann (CR) manifolds. The main objects of study are transversally and tangentially CR foliations, Levi foliations of CR manifolds, solutions of the Yang-Mills equations, tangentially Monge-Ampere foliations, the transverse Beltrami equations, and CR orbifolds. The novelty of the authors' approach consists in the overall use of the methods of foliation theory and choice of specific applications. Examples of such applications are Rea's holomorphic extension of Levi foliations, Stanton's holomorphic degeneracy, Boas and Straube's approximately commuting vector fields method for the study of global regularity of Neumann operators and Bergman projections in multi-dimensional complex analysis in several complex variables, as well as various applications to differential geometry. Many open problems proposed in the monograph may attract the mathematical community and lead to further applications of