Geometry From Isometries To Special Relativity

Download Geometry From Isometries To Special Relativity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry From Isometries To Special Relativity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geometry: from Isometries to Special Relativity

This textbook offers a geometric perspective on special relativity, bridging Euclidean space, hyperbolic space, and Einstein’s spacetime in one accessible, self-contained volume. Using tools tailored to undergraduates, the author explores Euclidean and non-Euclidean geometries, gradually building from intuitive to abstract spaces. By the end, readers will have encountered a range of topics, from isometries to the Lorentz–Minkowski plane, building an understanding of how geometry can be used to model special relativity. Beginning with intuitive spaces, such as the Euclidean plane and the sphere, a structure theorem for isometries is introduced that serves as a foundation for increasingly sophisticated topics, such as the hyperbolic plane and the Lorentz–Minkowski plane. By gradually introducing tools throughout, the author offers readers an accessible pathway to visualizing increasingly abstract geometric concepts. Numerous exercises are also included with selected solutions provided. Geometry: from Isometries to Special Relativity offers a unique approach to non-Euclidean geometries, culminating in a mathematical model for special relativity. The focus on isometries offers undergraduates an accessible progression from the intuitive to abstract; instructors will appreciate the complete instructor solutions manual available online. A background in elementary calculus is assumed.
Geometry

This textbook offers a geometric perspective on special relativity, bridging Euclidean space, hyperbolic space, and Einstein's spacetime in one accessible, self-contained volume. Using tools tailored to undergraduates, the author explores Euclidean and non-Euclidean geometries, gradually building from intuitive to abstract spaces. By the end, readers will have encountered a range of topics, from isometries to the Lorentz-Minkowski plane, building an understanding of how geometry can be used to model special relativity. Beginning with intuitive spaces, such as the Euclidean plane and the sphere, a structure theorem for isometries is introduced that serves as a foundation for increasingly sophisticated topics, such as the hyperbolic plane and the Lorentz-Minkowski plane. By gradually introducing tools throughout, the author offers readers an accessible pathway to visualizing increasingly abstract geometric concepts. Numerous exercises are also included with selected solutions provided. Geometry: from Isometries to Special Relativity offers a unique approach to non-Euclidean geometries, culminating in a mathematical model for special relativity. The focus on isometries offers undergraduates an accessible progression from the intuitive to abstract; instructors will appreciate the complete instructor solutions manual available online. A background in elementary calculus is assumed.
Geometry and Quantum Features of Special Relativity

This second edition of "The Geometry of Special Relativity - a Concise Course" offers more than just corrections and enhancements. It includes a new chapter on four-velocities and boosts as points and straight lines of hyperbolic geometry. Quantum properties of relativistic particles are derived from the unitary representations of the Poincaré group. Notably, the massless representation is related to the concept of a Hopf bundle. Scattering theory is developed analogously to the non-relativistic case, relying on proper symmetry postulates. Chapters on quantum fields, reflections of charge, space, and time, and the necessary gauge symmetry of quantized vector fields complete the foundation for evaluating Feynman graphs. An extended appendix covers more than a dozen additional topics. The first half of this edition refines the first edition, using simple diagrams to explain time dilation, length contraction, and Lorentz transformations based on the invariance of the speed of light. The text derives key results of relativistic physics and resolves apparent paradoxes. Following a presentation of the action principle, Noether's theorem, and relativistic mechanics, the book covers the covariant formulation of electrodynamics and classical field theory. The groups of rotations and Lorentz transformations are also examined as a transition to relativistic quantum physics. This text is aimed at graduate students of physics and mathematics seeking an advanced introduction to special relativity and related topics. Its presentation of quantum physics aims to inspire fellow researchers.