Geometric Programming For Design And Cost Optimization


Download Geometric Programming For Design And Cost Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometric Programming For Design And Cost Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Geometric Programming for Design and Cost Optimization


Geometric Programming for Design and Cost Optimization

Author: Robert C. Creese

language: en

Publisher: Morgan & Claypool Publishers

Release Date: 2009-10-26


DOWNLOAD





There are numerous techniques of optimization methods such as linear programming, dynamic programming, geometric programming, queuing theory, statistical analysis, risk analysis, Monte Carlo simulation, numerous search techniques, etc. Geometric programming is one of the better tools that can be used to achieve the design requirements and minimal cost objective. Geometric programming can be used not only to provide a specific solution to a problem, but it also can in many instances give a general solution with specific design relationships. These design relationships based upon the design constants can then be used for the optimal solution without having to resolve the original problem. This fascinating characteristic appears to be unique to geometric programming. The purpose of this text is to introduce manufacturing engineers, design engineers, manufacturing technologists, cost engineers, project managers, industrial consultants and finance managers to the topic of geometric programming.

Geometric Programming for Design and Cost Optimization 2nd edition


Geometric Programming for Design and Cost Optimization 2nd edition

Author: Robert Creese

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





Geometric programming is used for design and cost optimization, the development of generalized design relationships, cost ratios for specific problems, and profit maximization. The early pioneers of the process - Zener, Duffin, Peterson, Beightler, Wilde, and Phillips -- played important roles in the development of geometric programming. There are three major areas: 1) Introduction, History, and Theoretical Fundamentals, 2) Applications with Zero Degrees of Difficulty, and 3) Applications with Positive Degrees of Difficulty. The primal-dual relationships are used to illustrate how to determine the primal variables from the dual solution and how to determine additional dual equations when the degrees of difficulty are positive. A new technique for determining additional equations for the dual, Dimensional Analysis, is demonstrated. The various solution techniques of the constrained derivative approach, the condensation of terms, and dimensional analysis are illustrated with example problems. The goal of this work is to have readers develop more case studies to further the application of this exciting tool. Table of Contents: Introduction / Brief History of Geometric Programming / Theoretical Considerations / The Optimal Box Design Case Study / Trash Can Case Study / The Open Cargo Shipping Box Case Study / Metal Casting Cylindrical Riser Case Study / Inventory Model Case Study / Process Furnace Design Case Study / Gas Transmission Pipeline Case Study / Profit Maximization Case Study / Material Removal/Metal Cutting Economics Case Study / Journal Bearing Design Case Study / Metal Casting Hemispherical Top Cylindrical Side Riser\\Case Study / Liquefied Petroleum Gas (LPG) Cylinders Case Study / Material Removal/Metal Cutting Economics with Two Constraints / The Open Cargo Shipping Box with Skids / Profit Maximization Considering Decreasing Cost Functions of Inventory Policy / Summary and Future Directions / Thesis and Dissertations on Geometric Programming

Geometric Programming for Design and Cost Optimization


Geometric Programming for Design and Cost Optimization

Author: Robert Creese

language: en

Publisher: Springer Nature

Release Date: 2022-11-10


DOWNLOAD





Geometric programming is used for design and cost optimization and the development of generalized design relationships and cost rations for specific problems. The early pioneers of the process, Zener, Duffin, Peterson, Beightler, and Wilde, played important roles in the development of geometric programming. The theory of geometric programming is presented and 10 examples are presented and solved in detail. The examples illustrate some of the difficulties encountered in typical problems and techniques for overcoming these difficulties. The primal-dual relationships are used to illustrate how to determine the primal variables from the dual solution. These primal-dual relationships can be used to determine additional dual equations when the degrees of difficulty are positive. The goal of this work is to have readers develop more case studies to further the application of this exciting mathematical tool. Table of Contents: Introduction / Brief History of Geometric Programming / Theoretical Considerations / Trash Can Case Study / Open Cargo Shipping Box Case Study / Metal Casting Cylindrical Riser Case Study / Process Furnace Design Case Study / Gas Transmission Pipeline Case Study / Journal Bearing Design Case Study / Metal Casting Hemispherical Top Cylindrical Side Riser / Liquefied Petroleum Gas(LPG) Cylinders Case Study / Material Removal/Metal Cutting Economics Case Study / Summary and Future Directions