Geometric Numerical Integration And Schrodinger Equations

Download Geometric Numerical Integration And Schrodinger Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometric Numerical Integration And Schrodinger Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geometric Numerical Integration and Schrödinger Equations

The goal of geometric numerical integration is the simulation of evolution equations possessing geometric properties over long times. Of particular importance are Hamiltonian partial differential equations typically arising in application fields such as quantum mechanics or wave propagation phenomena. They exhibit many important dynamical features such as energy preservation and conservation of adiabatic invariants over long time. In this setting, a natural question is how and to which extent the reproduction of such long time qualitative behavior can be ensured by numerical schemes. Starting from numerical examples, these notes provide a detailed analysis of the Schrödinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated by symplectic splitting methods. Analysis of stability and instability phenomena induced by space and time discretization are given, and rigorous mathematical explanations for them. The book grew out of a graduate level course and is of interest to researchers and students seeking an introduction to the subject matter.
Geometric Numerical Integration and Schrödinger Equations

Author: Erwan Faou
language: en
Publisher: European Mathematical Society
Release Date: 2012
The goal of geometric numerical integration is the simulation of evolution equations possessing geometric properties over long periods of time. Of particular importance are Hamiltonian partial differential equations typically arising in application fields such as quantum mechanics or wave propagation phenomena. They exhibit many important dynamical features such as energy preservation and conservation of adiabatic invariants over long periods of time. In this setting, a natural question is how and to which extent the reproduction of such long-time qualitative behavior can be ensured by numerical schemes. Starting from numerical examples, these notes provide a detailed analysis of the Schrodinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated by symplectic splitting methods. Analysis of stability and instability phenomena induced by space and time discretization are given, and rigorous mathematical explanations are provided for them. The book grew out of a graduate-level course and is of interest to researchers and students seeking an introduction to the subject matter.
A Concise Introduction to Geometric Numerical Integration

Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.