Geometric Approximation Algorithms In The Online And Data Stream Models

Download Geometric Approximation Algorithms In The Online And Data Stream Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometric Approximation Algorithms In The Online And Data Stream Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geometric Approximation Algorithms in the Online and Data Stream Models

The online and data stream models of computation have recently attracted considerable research attention due to many real-world applications in various areas such as data mining, machine learning, distributed computing, and robotics. In both these models, input items arrive one at a time, and the algorithms must decide based on the partial data received so far, without any secure information about the data that will arrive in the future. In this thesis, we investigate efficient algorithms for a number of fundamental geometric optimization problems in the online and data stream models. The problems studied in this thesis can be divided into two major categories: geometric clustering and computing various extent measures of a set of points.
Approximation and Online Algorithms

Author: Parinya Chalermsook
language: en
Publisher: Springer Nature
Release Date: 2022-10-20
This book constitutes revised selected papers from the thoroughly refereed workshop proceedings of the 20th International Workshop on Approximation and Online Algorithms, WAOA 2022, which was colocated with ALGO 2022 and took place in Potsdam, Germany, in September 2022. The 12 papers included in these proceedings were carefully reviewed and selected from21 submissions. They focus on topics such as graph algorithms, network design, algorithmic game theory, approximation and online algorithms, etc.
Data Streams

In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.