Genomics Analysis With Spark Docker And Clouds


Download Genomics Analysis With Spark Docker And Clouds PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genomics Analysis With Spark Docker And Clouds book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Genomics in the Cloud


Genomics in the Cloud

Author: Geraldine A. Van der Auwera

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2020-04-02


DOWNLOAD





Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytesâ??or over 50 million gigabytesâ??of genomic data, and theyâ??re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian Oâ??Connor of the UC Santa Cruz Genomics Institute, guide you through the process. Youâ??ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra

Genomics in the Cloud


Genomics in the Cloud

Author: Geraldine A. Van der Auwera

language: en

Publisher: O'Reilly Media

Release Date: 2020-04-02


DOWNLOAD





Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytesâ??or over 50 million gigabytesâ??of genomic data, and theyâ??re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian Oâ??Connor of the UC Santa Cruz Genomics Institute, guide you through the process. Youâ??ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra

Genomics in the Azure Cloud


Genomics in the Azure Cloud

Author: Colby T. Ford

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2022-11-14


DOWNLOAD





This practical guide bridges the gap between general cloud computing architecture in Microsoft Azure and scientific computing for bioinformatics and genomics. You'll get a solid understanding of the architecture patterns and services that are offered in Azure and how they might be used in your bioinformatics practice. You'll get code examples that you can reuse for your specific needs. And you'll get plenty of concrete examples to illustrate how a given service is used in a bioinformatics context. You'll also get valuable advice on how to: Use enterprise platform services to easily scale your bioinformatics workloads Organize, query, and analyze genomic data at scale Build a genomics data lake and accompanying data warehouse Use Azure Machine Learning to scale your model training, track model performance, and deploy winning models Orchestrate and automate processing pipelines using Azure Data Factory and Databricks Cloudify your organization's existing bioinformatics pipelines by moving your workflows to Azure high-performance compute services And more