Genetic Programming And Data Structures

Download Genetic Programming And Data Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genetic Programming And Data Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Genetic Programming and Data Structures

Author: W.B. Langdon
language: en
Publisher: Springer Science & Business Media
Release Date: 1998-04-30
Computers that `program themselves' has long been an aim of computer scientists. Recently genetic programming (GP) has started to show its promise by automatically evolving programs. Indeed in a small number of problems GP has evolved programs whose performance is similar to or even slightly better than that of programs written by people. The main thrust of GP has been to automatically create functions. While these can be of great use they contain no memory and relatively little work has addressed automatic creation of program code including stored data. This issue is the main focus of Genetic Programming, and Data Structures: Genetic Programming + Data Structures = Automatic Programming!. This book is motivated by the observation from software engineering that data abstraction (e.g., via abstract data types) is essential in programs created by human programmers. This book shows that abstract data types can be similarly beneficial to the automatic production of programs using GP. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! shows how abstract data types (stacks, queues and lists) can be evolved using genetic programming, demonstrates how GP can evolve general programs which solve the nested brackets problem, recognises a Dyck context free language, and implements a simple four function calculator. In these cases, an appropriate data structure is beneficial compared to simple indexed memory. This book also includes a survey of GP, with a critical review of experiments with evolving memory, and reports investigations of real world electrical network maintenance scheduling problems that demonstrate that Genetic Algorithms can find low cost viable solutions to such problems. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! should be of direct interest to computer scientists doing research on genetic programming, genetic algorithms, data structures, and artificial intelligence. In addition, this book will be of interest to practitioners working in all of these areas and to those interested in automatic programming.
Foundations of Genetic Programming

Author: William B. Langdon
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Genetic programming (GP), one of the most advanced forms of evolutionary computation, has been highly successful as a technique for getting computers to automatically solve problems without having to tell them explicitly how. Since its inceptions more than ten years ago, GP has been used to solve practical problems in a variety of application fields. Along with this ad-hoc engineering approaches interest increased in how and why GP works. This book provides a coherent consolidation of recent work on the theoretical foundations of GP. A concise introduction to GP and genetic algorithms (GA) is followed by a discussion of fitness landscapes and other theoretical approaches to natural and artificial evolution. Having surveyed early approaches to GP theory it presents new exact schema analysis, showing that it applies to GP as well as to the simpler GAs. New results on the potentially infinite number of possible programs are followed by two chapters applying these new techniques.
Genetic Algorithms + Data Structures = Evolution Programs

Author: Zbigniew Michalewicz
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques has been growing in the last decade, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. It is aimed at researchers, practitioners, and graduate students in computer science and artificial intelligence, operations research, and engineering. This second edition includes several new sections and many references to recent developments. A simple example of genetic code and an index are also added. Writing an evolution program for a given problem should be an enjoyable experience - this book may serve as a guide to this task.