Generative Ai Security


Download Generative Ai Security PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generative Ai Security book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Generative AI Security


Generative AI Security

Author: Ken Huang

language: en

Publisher: Springer Nature

Release Date: 2024-04-05


DOWNLOAD





This book explores the revolutionary intersection of Generative AI (GenAI) and cybersecurity. It presents a comprehensive guide that intertwines theories and practices, aiming to equip cybersecurity professionals, CISOs, AI researchers, developers, architects and college students with an understanding of GenAI’s profound impacts on cybersecurity. The scope of the book ranges from the foundations of GenAI, including underlying principles, advanced architectures, and cutting-edge research, to specific aspects of GenAI security such as data security, model security, application-level security, and the emerging fields of LLMOps and DevSecOps. It explores AI regulations around the globe, ethical considerations, the threat landscape, and privacy preservation. Further, it assesses the transformative potential of GenAI in reshaping the cybersecurity landscape, the ethical implications of using advanced models, and the innovative strategies required to secure GenAI applications. Lastly, the book presents an in-depth analysis of the security challenges and potential solutions specific to GenAI, and a forward-looking view of how it can redefine cybersecurity practices. By addressing these topics, it provides answers to questions on how to secure GenAI applications, as well as vital support with understanding and navigating the complex and ever-evolving regulatory environments, and how to build a resilient GenAI security program. The book offers actionable insights and hands-on resources for anyone engaged in the rapidly evolving world of GenAI and cybersecurity.

Generative AI, Cybersecurity, and Ethics


Generative AI, Cybersecurity, and Ethics

Author: Mohammad Rubyet Islam

language: en

Publisher: John Wiley & Sons

Release Date: 2024-11-25


DOWNLOAD





“Generative AI, Cybersecurity, and Ethics’ is an essential guide for students, providing clear explanations and practical insights into the integration of generative AI in cybersecurity. This book is a valuable resource for anyone looking to build a strong foundation in these interconnected fields.” —Dr. Peter Sandborn, Professor, Department of Mechanical Engineering, University of Maryland, College Park “Unchecked cyber-warfare made exponentially more disruptive by Generative AI is nightmare fuel for this and future generations. Dr. Islam plumbs the depth of Generative AI and ethics through the lens of a technology practitioner and recognized AI academician, energized by the moral conscience of an ethical man and a caring humanitarian. This book is a timely primer and required reading for all those concerned about accountability and establishing guardrails for the rapidly developing field of AI.” —David Pere, (Retired Colonel, United States Marine Corps) CEO & President, Blue Force Cyber Inc. Equips readers with the skills and insights necessary to succeed in the rapidly evolving landscape of Generative AI and cyber threats Generative AI (GenAI) is driving unprecedented advances in threat detection, risk analysis, and response strategies. However, GenAI technologies such as ChatGPT and advanced deepfake creation also pose unique challenges. As GenAI continues to evolve, governments and private organizations around the world need to implement ethical and regulatory policies tailored to AI and cybersecurity. Generative AI, Cybersecurity, and Ethics provides concise yet thorough insights into the dual role artificial intelligence plays in both enabling and safeguarding against cyber threats. Presented in an engaging and approachable style, this timely book explores critical aspects of the intersection of AI and cybersecurity while emphasizing responsible development and application. Reader-friendly chapters explain the principles, advancements, and challenges of specific domains within AI, such as machine learning (ML), deep learning (DL), generative AI, data privacy and protection, the need for ethical and responsible human oversight in AI systems, and more. Incorporating numerous real-world examples and case studies that connect theoretical concepts with practical applications, Generative AI, Cybersecurity, and Ethics: Explains the various types of cybersecurity and describes how GenAI concepts are implemented to safeguard data and systems Highlights the ethical challenges encountered in cybersecurity and the importance of human intervention and judgment in GenAI Describes key aspects of human-centric AI design, including purpose limitation, impact assessment, societal and cultural sensitivity, and interdisciplinary research Covers the financial, legal, and regulatory implications of maintaining robust security measures Discusses the future trajectory of GenAI and emerging challenges such as data privacy, consent, and accountability Blending theoretical explanations, practical illustrations, and industry perspectives, Generative AI, Cybersecurity, and Ethics is a must-read guide for professionals and policymakers, advanced undergraduate and graduate students, and AI enthusiasts interested in the subject.

Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities


Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities

Author: Sanjay Misra

language: en

Publisher: Springer Nature

Release Date: 2021-05-31


DOWNLOAD





This book provides stepwise discussion, exhaustive literature review, detailed analysis and discussion, rigorous experimentation results (using several analytics tools), and an application-oriented approach that can be demonstrated with respect to data analytics using artificial intelligence to make systems stronger (i.e., impossible to breach). We can see many serious cyber breaches on Government databases or public profiles at online social networking in the recent decade. Today artificial intelligence or machine learning is redefining every aspect of cyber security. From improving organizations’ ability to anticipate and thwart breaches, protecting the proliferating number of threat surfaces with Zero Trust Security frameworks to making passwords obsolete, AI and machine learning are essential to securing the perimeters of any business. The book is useful for researchers, academics, industry players, data engineers, data scientists, governmental organizations, and non-governmental organizations.