Generalized Interval Neutrosophic Rough Sets And Its Application In Multi Attribute Decision Making

Download Generalized Interval Neutrosophic Rough Sets And Its Application In Multi Attribute Decision Making PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Interval Neutrosophic Rough Sets And Its Application In Multi Attribute Decision Making book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Generalized Interval Neutrosophic Rough Sets and its Application in Multi-Attribute Decision Making

Neutrosophic set (NS) was originally proposed by Smarandache to handle indeterminate and inconsistent information. It is a generalization of fuzzy sets and intuitionistic fuzzy sets. Wang and Smarandache proposed interval neutrosophic sets (INS) which is a special case of NSs and would be extensively applied to resolve practical issues.
Generalized Interval Neutrosophic Rough Sets and its Application in Multi-Attribute Decision Making

Neutrosophic set (NS) was originally proposed by Smarandache to handle indeterminate and inconsistent information. It is a generalization of fuzzy sets and intuitionistic fuzzy sets. Wang and Smarandache proposed interval neutrosophic sets (INS) which is a special case of NSs and would be extensively applied to resolve practical issues. In this paper, we put forward generalized interval neutrosophic rough sets based on interval neutrosophic relations by combining interval neutrosophic sets with rough sets. We explore the hybrid model through constructive approach as well as axiomatic approach. On one hand, we define generalized interval neutrosophic lower and upper approximation operators through constructive approach. Moreover, we investigate the relevance between generalized interval neutrosophic lower (upper) approximation operators and particular interval neutrosophic relations. On the other hand, we study axiomatic characterizations of generalized interval neutrosophic approximation operators, and also show that different axiom sets of theoretical interval neutrosophic operators make sure the existence of different classes of INRs that yield the same interval neutrosophic approximation operators. Finally, we introduce generalized interval neutrosophic rough sets on two universes and a universal algorithm of multi-attribute decision making based on generalized interval neutrosophic rough sets on two universes. Besides, an example is given to demonstrate the validity of the new rough set model.
Non-Dual Multi-Granulation Neutrosophic Rough Set with Applications

Multi-attribute decision-making (MADM) is a part of management decision-making and an important branch of the modern decision theory and method. MADM focuses on the decision problem of discrete and finite decision schemes. Uncertain MADM is an extension and development of classical multi-attribute decision making theory. When the attribute value of MADM is shown by neutrosophic number, that is, the attribute value is complex data and needs three values to express, it is called the MADM problem in which the attribute values are neutrosophic numbers. However, in practical MADM problems, to minimize errors in individual decision making, we need to consider the ideas of many people and synthesize their opinions.