Generalized Functionals Of Brownian Motion And Their Applications


Download Generalized Functionals Of Brownian Motion And Their Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Functionals Of Brownian Motion And Their Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Generalized Functionals of Brownian Motion and Their Applications


Generalized Functionals of Brownian Motion and Their Applications

Author: Nasir Uddin Ahmed

language: en

Publisher: World Scientific

Release Date: 2012


DOWNLOAD





This invaluable research monograph presents a unified and fascinating theory of generalized functionals of Brownian motion and other fundamental processes such as fractional Brownian motion and Levy process OCo covering the classical WienerOCoIto class including the generalized functionals of Hida as special cases, among others. It presents a thorough and comprehensive treatment of the WienerOCoSobolev spaces and their duals, as well as Malliavin calculus with their applications. The presentation is lucid and logical, and is based on a solid foundation of analysis and topology. The monograph develops the notions of compactness and weak compactness on these abstract Fock spaces and their duals, clearly demonstrating their nontrivial applications to stochastic differential equations in finite and infinite dimensional Hilbert spaces, optimization and optimal control problems. Readers will find the book an interesting and easy read as materials are presented in a systematic manner with a complete analysis of classical and generalized functionals of scalar Brownian motion, Gaussian random fields and their vector versions in the increasing order of generality. It starts with abstract Fourier analysis on the Wiener measure space where a striking similarity of the celebrated RieszOCoFischer theorem for separable Hilbert spaces and the space of WienerOCoIto functionals is drawn out, thus providing a clear insight into the subject.

Proceedings of the International Conference on Stochastic Analysis and Applications


Proceedings of the International Conference on Stochastic Analysis and Applications

Author: Sergio Albeverio

language: en

Publisher: Springer Science & Business Media

Release Date: 2004-07-28


DOWNLOAD





Stochastic analysis is a field of mathematical research having numerous interactions with other domains of mathematics such as partial differential equations, riemannian path spaces, dynamical systems, optimization. It also has many links with applications in engineering, finance, quantum physics, and other fields. This book covers recent and diverse aspects of stochastic and infinite-dimensional analysis. The included papers are written from a variety of standpoints (white noise analysis, Malliavin calculus, quantum stochastic calculus) by the contributors, and provide a broad coverage of the subject. This volume will be useful to graduate students and research mathematicians wishing to get acquainted with recent developments in the field of stochastic analysis.

Selected Papers of Takeyuki Hida


Selected Papers of Takeyuki Hida

Author: Takeyuki Hida

language: en

Publisher: World Scientific

Release Date: 2001-01-01


DOWNLOAD





The topics discussed in this book can be classified into three parts: . (i) Gaussian processes. The most general and in fact final representation theory of Gaussian processes is included in this book. This theory is still referred to often and its developments are discussed. (ii) White noise analysis. This book includes the notes of the series of lectures delivered in 1975 at Carleton University in Ottawa. They describe the very original idea of introducing the notion of generalized Brownian functionals (nowadays called OC generalized white noise functionalsOCO, and sometimes OC Hida distributionOCO. (iii) Variational calculus for random fields. This topic will certainly represent one of the driving research lines for probability theory in the next century, as can be seen from several papers in this volume. Sample Chapter(s). Chapter 1: Analysis of Brownian Functionals (1,502 KB). Contents: General Theory of White Noise Functionals; Gaussian and Other Processes; Infinite Dimensional Harmonic Analysis and Rotation Group; Quantum Theory; Feynman Integrals and Random Fields; Variational Calculus and Random Fields; Application to Biology. Readership: Graduate students and researchers in the fields of probability theory, functional analysis, statistics and theoretical physics."