Generalizations Of Finite Metrics And Cuts

Download Generalizations Of Finite Metrics And Cuts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalizations Of Finite Metrics And Cuts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Generalizations Of Finite Metrics And Cuts

Author: Michel-marie Deza
language: en
Publisher: World Scientific
Release Date: 2016-05-06
This book introduces oriented version of metrics and cuts and their multidimensional analogues, as well as partial metrics and weighted metrics. It is a follow-up of Geometry of Cuts and Metrics by Deza and Laurent which presents rich theory of classical binary and symmetric objects — metrics and cuts.Many research publications on this subject are devoted to different special aspects of the theory of generalized metrics. However, they are disconnected one from other, often written in different mathematical language, consider the same objects from different points of view without analysis of possible connections, etc. In this book we will construct full theory of main classes of finite generalized metrics and their polyhedral aspects.
Handbook of Geometric Constraint Systems Principles

The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.