General Fractional Derivatives With Applications In Viscoelasticity

Download General Fractional Derivatives With Applications In Viscoelasticity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get General Fractional Derivatives With Applications In Viscoelasticity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
General Fractional Derivatives with Applications in Viscoelasticity

General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the calculus operator viewpoint. Fractional calculus and its applications have gained considerable popularity and importance because of their applicability to many seemingly diverse and widespread fields in science and engineering. Many operations in physics and engineering can be defined accurately by using fractional derivatives to model complex phenomena. Viscoelasticity is chief among them, as the general fractional calculus approach to viscoelasticity has evolved as an empirical method of describing the properties of viscoelastic materials. General Fractional Derivatives with Applications in Viscoelasticity makes a concise presentation of general fractional calculus. - Presents a comprehensive overview of the fractional derivatives and their applications in viscoelasticity - Provides help in handling the power-law functions - Introduces and explores the questions about general fractional derivatives and its applications
General Fractional Derivatives

General Fractional Derivatives: Theory, Methods and Applications provides knowledge of the special functions with respect to another function, and the integro-differential operators where the integrals are of the convolution type and exist the singular, weakly singular and nonsingular kernels, which exhibit the fractional derivatives, fractional integrals, general fractional derivatives, and general fractional integrals of the constant and variable order without and with respect to another function due to the appearance of the power-law and complex herbivores to figure out the modern developments in theoretical and applied science. Features: Give some new results for fractional calculus of constant and variable orders. Discuss some new definitions for fractional calculus with respect to another function. Provide definitions for general fractional calculus of constant and variable orders. Report new results of general fractional calculus with respect to another function. Propose news special functions with respect to another function and their applications. Present new models for the anomalous relaxation and rheological behaviors. This book serves as a reference book and textbook for scientists and engineers in the fields of mathematics, physics, chemistry and engineering, senior undergraduate and graduate students. Dr. Xiao-Jun Yang is a full professor of Applied Mathematics and Mechanics, at China University of Mining and Technology, China. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Modelling and Analysis, International Journal of Numerical Methods for Heat & Fluid Flow, and Thermal Science.
Solved Exercises in Fractional Calculus

Author: Edmundo Capelas de Oliveira
language: en
Publisher: Springer Nature
Release Date: 2025-04-28
This textbook provides a comprehensive exploration of special functions and fractional calculus, offering a structured approach through solved and proposed exercises. Covering key mathematical concepts such as Mittag-Leffler functions, Kilbas-Saigo functions, and the Erdélyi-Kober fractional integral, it balances theoretical insights with practical applications. Appendices introduce Barnes G-functions and demonstrate the use of Mathematica for fractional calculus, expanding the book’s accessibility. With an updated index and extensive references, this edition serves as a valuable resource for researchers, graduate students, and professionals in applied mathematics and related fields.