General Existence Theorems In Moduli Theory


Download General Existence Theorems In Moduli Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get General Existence Theorems In Moduli Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

General Existence Theorems in Moduli Theory


General Existence Theorems in Moduli Theory

Author: Jack Kingsbury Hall

language: en

Publisher: Stanford University

Release Date: 2011


DOWNLOAD





In this thesis, we prove that there is an algebraic stack parameterizing all curves. The curves that appear in this algebraic stack are allowed to be arbitrarily singular, non-reduced, disconnected, and reducible. We also prove the boundedness of the open substack parameterizing reduced and connected curves with fixed arithmetic genus g and at most e irreducible components. We also show that for essentially any algebraic stack, there is an algebraic stack, the Hilbert stack, parameterizing quasi-finite maps to the stack. The technical heart of this result is a generalization of formal GAGA to a non-separated morphism of algebraic stacks, something that was previously unknown for a morphism of schemes. We also employ derived algebraic geometry, in an essential way, to prove the algebraicity of the Hilbert stack. The Hilbert stack, for algebraic spaces, was claimed to exist by M. Artin (1974), but was left unproved due to a lack of foundational results for non-separated algebraic spaces. Finally, we generalize the fundamental GAGA results of J. P. Serre (1956) in three ways---to the non-separated setting, to stacks, and to families. As an application of these results, we show that analytic compactifications of the moduli stack of smooth curves possessing modular interpretations are algebraizable.

General Existence Theorems in Moduli Theory


General Existence Theorems in Moduli Theory

Author: Jack Kingsbury Hall

language: en

Publisher:

Release Date: 2011


DOWNLOAD





In this thesis, we prove that there is an algebraic stack parameterizing all curves. The curves that appear in this algebraic stack are allowed to be arbitrarily singular, non-reduced, disconnected, and reducible. We also prove the boundedness of the open substack parameterizing reduced and connected curves with fixed arithmetic genus g and at most e irreducible components. We also show that for essentially any algebraic stack, there is an algebraic stack, the Hilbert stack, parameterizing quasi-finite maps to the stack. The technical heart of this result is a generalization of formal GAGA to a non-separated morphism of algebraic stacks, something that was previously unknown for a morphism of schemes. We also employ derived algebraic geometry, in an essential way, to prove the algebraicity of the Hilbert stack. The Hilbert stack, for algebraic spaces, was claimed to exist by M. Artin (1974), but was left unproved due to a lack of foundational results for non-separated algebraic spaces. Finally, we generalize the fundamental GAGA results of J.P. Serre (1956) in three ways--to the non-separated setting, to stacks, and to families. As an application of these results, we show that analytic compactifications of the moduli stack of smooth curves possessing modular interpretations are algebraizable.

The Geometry of Moduli Spaces of Sheaves


The Geometry of Moduli Spaces of Sheaves

Author: Daniel Huybrechts

language: en

Publisher: Cambridge University Press

Release Date: 2010-05-27


DOWNLOAD





This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.


Recent Search