Gaussian Process Example

Download Gaussian Process Example PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Gaussian Process Example book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Gaussian Processes for Machine Learning

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Surrogates

Computer simulation experiments are essential to modern scientific discovery, whether that be in physics, chemistry, biology, epidemiology, ecology, engineering, etc. Surrogates are meta-models of computer simulations, used to solve mathematical models that are too intricate to be worked by hand. Gaussian process (GP) regression is a supremely flexible tool for the analysis of computer simulation experiments. This book presents an applied introduction to GP regression for modelling and optimization of computer simulation experiments. Features: • Emphasis on methods, applications, and reproducibility. • R code is integrated throughout for application of the methods. • Includes more than 200 full colour figures. • Includes many exercises to supplement understanding, with separate solutions available from the author. • Supported by a website with full code available to reproduce all methods and examples. The book is primarily designed as a textbook for postgraduate students studying GP regression from mathematics, statistics, computer science, and engineering. Given the breadth of examples, it could also be used by researchers from these fields, as well as from economics, life science, social science, etc.
Random Processes by Example

This volume first introduces the mathematical tools necessary for understanding and working with a broad class of applied stochastic models. The toolbox includes Gaussian processes, independently scattered measures such as Gaussian white noise and Poisson random measures, stochastic integrals, compound Poisson, infinitely divisible and stable distributions and processes. Next, it illustrates general concepts by handling a transparent but rich example of a OC teletraffic modelOCO. A minor tuning of a few parameters of the model leads to different workload regimes, including Wiener process, fractional Brownian motion and stable L(r)vy process. The simplicity of the dependence mechanism used in the model enables us to get a clear understanding of long and short range dependence phenomena. The model also shows how light or heavy distribution tails lead to continuous Gaussian processes or to processes with jumps in the limiting regime. Finally, in this volume, readers will find discussions on the multivariate extensions that admit a variety of completely different applied interpretations. The reader will quickly become familiar with key concepts that form a language for many major probabilistic models of real world phenomena but are often neglected in more traditional courses of stochastic processes. Sample Chapter(s). Chapter 1: Preliminaries (367 KB). Contents: Preliminaries: Random Variables: A Summary; From Poisson to Stable Variables; Limit Theorems for Sums and Domains of Attraction; Random Vectors; Random Processes: Random Processes: Main Classes; Examples of Gaussian Random Processes; Random Measures and Stochastic Integrals; Limit Theorems for Poisson Integrals; L(r)vy Processes; Spectral Representations; Convergence of Random Processes; Teletraffic Models: A Model of Service System; Limit Theorems for the Workload; Micropulse Model; Spacial Extensions. Readership: Graduate students and researchers in probability & statist