Gas Turbine Combustor Modelling For Design


Download Gas Turbine Combustor Modelling For Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Gas Turbine Combustor Modelling For Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Gas Turbine Combustor Modelling for Design


Gas Turbine Combustor Modelling for Design

Author:

language: en

Publisher:

Release Date: 1902


DOWNLOAD





The design and development of gas turbine combustors is a crucial but uncertain part of an engine development process. Combustion within a gas turbine is a complex interaction of, among other things, fluid dynamics, heat and mass transfer and chemical kinetics. At present, the design process relies upon a wealth of experimental data and correlations. The proper use of this information requires experienced combustion engineers and even for them the design process is very time consuming. Some major engine manufacturers have attempted to address the above problem by developing one dimensional computer programs based on the above test and empirical data to assist combustor designers. Such programs are usually proprietary. The present work, based on this approach has yielded DEPTH, a combustor design program. DEPTH (Design and Evaluation of Pressure, Temperature and Heat transfer in combustors) is developed in Fortran-77 to assist in preliminary design and evaluation of conventional gas turbine combustion chambers. DEPTH can be used to carry out a preliminary design along with prediction of the cooling slots for a given metal temperature limit or to evaluate heat transfer and temperatures for an existing combustion chamber. Analysis of performance parameters such as efficiency, stability and NOx based on stirred reactor theories is also coupled. DEPTH is made sufficiently interactive/user-friendly such that no prior expertise is required as far as computer operation is concerned. The range of variables such as operating conditions, geometry, hardware, fuel type can all be effectively examined and their contribution towards the combustor performance studied. Such comprehensive study should provide ample opportunity for the designer to make the right decisions. It should also be an effective study aid. Returns in terms of higher thermal efficiencies is an incentive to go for combined cycles and cogeneration. In such cases, opting for higher cycle pressures together with a.

Design of Modern Turbine Combustors


Design of Modern Turbine Combustors

Author: A. M. Mellor

language: en

Publisher:

Release Date: 1990


DOWNLOAD





Lower pollutant emissions and broader multifuel flexibility are driving forces for advancing aircraft, vehicular, and industrial engine performance and versatility. Both are inherently connected with the design of the fuel injector and combustor system. The traditional concerns, improving durability and fuel economy over the life of the engine, remain additional requirements.**This volume offers a comprehensive treatment of modern practice aimed both at those in the field and newcomers interested in research and development for gas turbine combustors. Detailed description and assessment of a range of combustor design models and methods**Specification and evolution of fuels and fuel injectors**System models for fuel effects on engines and airframes**Evaluation of laser-based measurement techniques for combustor flow field studies

Combustion Instabilities in Gas Turbine Engines


Combustion Instabilities in Gas Turbine Engines

Author: Timothy C. Lieuwen

language: en

Publisher: AIAA (American Institute of Aeronautics & Astronautics)

Release Date: 2005


DOWNLOAD





This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.