Game Theory Explained A Mathematical Introduction With Optimization

Download Game Theory Explained A Mathematical Introduction With Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Game Theory Explained A Mathematical Introduction With Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Game Theory Explained: A Mathematical Introduction With Optimization

Author: Christopher H Griffin
language: en
Publisher: World Scientific
Release Date: 2025-02-27
This book provides an introduction to the mathematical theory of games using both classical methods and optimization theory. Employing a theorem-proof-example approach, the book emphasizes not only results in game theory, but also how to prove them.Part 1 of the book focuses on classical results in games, beginning with an introduction to probability theory by studying casino games and ending with Nash's proof of the existence of mixed strategy equilibria in general sum games. On the way, utility theory, game trees and the minimax theorem are covered with several examples. Part 2 introduces optimization theory and the Karush-Kuhn-Tucker conditions and illustrates how games can be rephrased as optimization problems, thus allowing Nash equilibria to be computed. Part 3 focuses on cooperative games. In this unique presentation, Nash bargaining is recast as a multi-criteria optimization problem and the results from linear programming and duality are revived to prove the classic Bondareva-Shapley theorem. Two appendices covering prerequisite materials are provided, and a 'bonus' appendix with an introduction to evolutionary games allows an instructor to swap out some classical material for a modern, self-contained discussion of the replicator dynamics, the author's particular area of study.
Game Theory Explained Hb

Author: Christopher Griffin
language: en
Publisher: World Scientific Publishing Company
Release Date: 2025
This book provides an introduction to the mathematical theory of games using both classical methods and optimization theory. Employing a theorem-proof-example approach, the book emphasizes not only results in game theory, but also how to prove them. Part 1 of the book focuses on classical results in games, beginning with an introduction to probability theory by studying casino games and ending with Nash's proof of the existence of mixed strategy equilibria in general sum games. On the way, utility theory, game trees and the minimax theorem are covered with several examples. Part 2 introduces optimization theory and the Karush-Kuhn-Tucker conditions and illustrates how games can be rephrased as optimization problems, thus allowing Nash equilibria to be computed. Part 3 focuses on cooperative games. In this unique presentation, Nash bargaining is recast as a multi-criteria optimization problem and the results from linear programming and duality are revived to prove the classic Bondareva-Shapley theorem. Two appendices covering prerequisite materials are provided, and a "bonus" appendix with an introduction to evolutionary games allows an instructor to swap out some classical material for a modern, self-contained discussion of the replicator dynamics, the author's particular area of study.
Mathematical Introduction to Linear Programming and Game Theory

Author: Louis Brickman
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Mathematical elegance is a constant theme in this treatment of linear programming and matrix games. Condensed tableau, minimal in size and notation, are employed for the simplex algorithm. In the context of these tableau the beautiful termination theorem of R.G. Bland is proven more simply than heretofore, and the important duality theorem becomes almost obvious. Examples and extensive discussions throughout the book provide insight into definitions, theorems, and applications. There is considerable informal discussion on how best to play matrix games. The book is designed for a one-semester undergraduate course. Readers will need a degree of mathematical sophistication and general tools such as sets, functions, and summation notation. No single college course is a prerequisite, but most students will do better with some prior college mathematics. This thorough introduction to linear programming and game theory will impart a deep understanding of the material and also increase the student's mathematical maturity.