Galois Theory Of Linear Differential Equations

Download Galois Theory Of Linear Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Galois Theory Of Linear Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Galois Theory of Linear Differential Equations

Author: Marius van der Put
language: en
Publisher: Springer Science & Business Media
Release Date: 2003-01-21
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
Lectures on Differential Galois Theory

Author: Andy R. Magid
language: en
Publisher: American Mathematical Soc.
Release Date: 1994
Differential Galois theory studies solutions of differential equations over a differential base field. In much the same way that ordinary Galois theory is the theory of field extensions generated by solutions of (one variable) polynomial equations, differential Galois theory looks at the nature of the differential field extension generated by the solution of differential equations. An additional feature is that the corresponding differential Galois groups (of automorphisms of the extension fixing the base and commuting with the derivation) are algebraic groups. This book deals with the differential Galois theory of linear homogeneous differential equations, whose differential Galois groups are algebraic matrix groups. In addition to providing a convenient path to Galois theory, this approach also leads to the constructive solution of the inverse problem of differential Galois theory for various classes of algebraic groups. Providing a self-contained development and many explicit examples, this book provides a unique approach to differential Galois theory and is suitable as a textbook at the advanced graduate level.
Differential Galois Theory and Non-Integrability of Hamiltonian Systems

This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)