Fuzzy Transforms For Image Processing And Data Analysis


Download Fuzzy Transforms For Image Processing And Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Transforms For Image Processing And Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fuzzy Transforms for Image Processing and Data Analysis


Fuzzy Transforms for Image Processing and Data Analysis

Author: Ferdinando Di Martino

language: en

Publisher: Springer Nature

Release Date: 2020-04-22


DOWNLOAD





This book analyzes techniques that use the direct and inverse fuzzy transform for image processing and data analysis. The book is divided into two parts, the first of which describes methods and techniques that use the bi-dimensional fuzzy transform method in image analysis. In turn, the second describes approaches that use the multidimensional fuzzy transform method in data analysis. An F-transform in one variable is defined as an operator which transforms a continuous function f on the real interval [a,b] in an n-dimensional vector by using n-assigned fuzzy sets A1, ... , An which constitute a fuzzy partition of [a,b]. Then, an inverse F-transform is defined in order to convert the n-dimensional vector output in a continuous function that equals f up to an arbitrary quantity ε. We may limit this concept to the finite case by defining the discrete F-transform of a function f in one variable, even if it is not known a priori. A simple extension of this concept to functions in two variables allows it to be used for the coding/decoding and processing of images. Moreover, an extended version with multidimensional functions can be used to address a host of topics in data analysis, including the analysis of large and very large datasets. Over the past decade, many researchers have proposed applications of fuzzy transform techniques for various image processing topics, such as image coding/decoding, image reduction, image segmentation, image watermarking and image fusion; and for such data analysis problems as regression analysis, classification, association rule extraction, time series analysis, forecasting, and spatial data analysis. The robustness, ease of use, and low computational complexity of fuzzy transforms make them a powerful fuzzy approximation tool suitable for many computer science applications. This book presents methods and techniques based on the use of fuzzy transforms in various applications of image processing and data analysis, including image segmentation, image tamper detection, forecasting, and classification, highlighting the benefits they offer compared with traditional methods. Emphasis is placed on applications of fuzzy transforms to innovative problems, such as massive data mining, and image and video security in social networks based on the application of advanced fragile watermarking systems. This book is aimed at researchers, students, computer scientists and IT developers to acquire the knowledge and skills necessary to apply and implement fuzzy transforms-based techniques in image and data analysis applications.

Computational Intelligence in Image Processing


Computational Intelligence in Image Processing

Author: Amitava Chatterjee

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-08-10


DOWNLOAD





Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the attention of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research problems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can be developed for the purpose of image inferencing. The book offers a unified view of the modern computational intelligence techniques required to solve real-world problems and it is suitable as a reference for engineers, researchers and graduate students.

Springer Handbook of Computational Intelligence


Springer Handbook of Computational Intelligence

Author: Janusz Kacprzyk

language: en

Publisher: Springer

Release Date: 2015-05-28


DOWNLOAD





The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.