Fuzzy Reasoning In Information Decision And Control Systems

Download Fuzzy Reasoning In Information Decision And Control Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Reasoning In Information Decision And Control Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fuzzy Reasoning in Information, Decision and Control Systems

Great progresses have been made in the application of fuzzy set theory and fuzzy logic. Most remarkable area of application is 'fuzzy control', where fuzzy logic was first applied to plant control systems and its use is expanding to consumer products. Most of fuzzy control systems uses fuzzy inference with max-min or max-product composition, similar to the algorithm that first used by Mamdani in 1970s. Some algorithms are developed to refine fuzzy controls systems but the main part of algorithm stays the same. Triggered by the success of fuzzy control systems, other ways of applying fuzzy set theory are also investigated. They are usually referred to as 'fuzzy expert sys tems', and their purpose are to combine the idea of fuzzy theory with AI based approach toward knowledge processing. These approaches can be more generally viewed as 'fuzzy information processing', that is to bring fuzzy idea into informa tion processing systems.
Fuzzy Reasoning in Information, Decision and Control Systems

Author: S.G. Tzafestas
language: en
Publisher: Springer Science & Business Media
Release Date: 1994-02-28
Great progresses have been made in the application of fuzzy set theory and fuzzy logic. Most remarkable area of application is 'fuzzy control', where fuzzy logic was first applied to plant control systems and its use is expanding to consumer products. Most of fuzzy control systems uses fuzzy inference with max-min or max-product composition, similar to the algorithm that first used by Mamdani in 1970s. Some algorithms are developed to refine fuzzy controls systems but the main part of algorithm stays the same. Triggered by the success of fuzzy control systems, other ways of applying fuzzy set theory are also investigated. They are usually referred to as 'fuzzy expert sys tems', and their purpose are to combine the idea of fuzzy theory with AI based approach toward knowledge processing. These approaches can be more generally viewed as 'fuzzy information processing', that is to bring fuzzy idea into informa tion processing systems.
Fuzzy Decision Making in Modeling and Control

Decision making and control are two fields with distinct methods for solving problems, and yet they are closely related. This book bridges the gap between decision making and control in the field of fuzzy decisions and fuzzy control, and discusses various ways in which fuzzy decision making methods can be applied to systems modeling and control.Fuzzy decision making is a powerful paradigm for dealing with human expert knowledge when one is designing fuzzy model-based controllers. The combination of fuzzy decision making and fuzzy control in this book can lead to novel control schemes that improve the existing controllers in various ways. The following applications of fuzzy decision making methods for designing control systems are considered: ? Fuzzy decision making for enhancing fuzzy modeling. The values of important parameters in fuzzy modeling algorithms are selected by using fuzzy decision making.? Fuzzy decision making for designing signal-based fuzzy controllers. The controller mappings and the defuzzification steps can be obtained by decision making methods.? Fuzzy design and performance specifications in model-based control. Fuzzy constraints and fuzzy goals are used.? Design of model-based controllers combined with fuzzy decision modules. Human operator experience is incorporated for the performance specification in model-based control.The advantages of bringing together fuzzy control and fuzzy decision making are shown with multiple examples from real and simulated control systems