Fuzzy Modeling And Control Theory And Applications

Download Fuzzy Modeling And Control Theory And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Modeling And Control Theory And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fuzzy Modeling and Control: Theory and Applications

Much work on fuzzy control, covering research, development and applications, has been developed in Europe since the 90's. Nevertheless, the existing books in the field are compilations of articles without interconnection or logical structure or they express the personal point of view of the author. This book compiles the developments of researchers with demonstrated experience in the field of fuzzy control following a logic structure and a unified the style. The first chapters of the book are dedicated to the introduction of the main fuzzy logic techniques, where the following chapters focus on concrete applications. This book is supported by the EUSFLAT and CEA-IFAC societies, which include a large number of researchers in the field of fuzzy logic and control. The central topic of the book, Fuzzy Control, is one of the main research and development lines covered by these associations.
Fuzzy Modeling for Control

Author: Robert Babuška
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.
Analytical Methods in Fuzzy Modeling and Control

Author: Jacek Kluska
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-03-10
This book is focused on mathematical analysis and rigorous design methods for fuzzy control systems based on Takagi-Sugeno fuzzy models, sometimes called Takagi-Sugeno-Kang models. The author presents a rather general analytical theory of exact fuzzy modeling and control of continuous and discrete-time dynamical systems. Main attention is paid to usability of the results for the control and computer engineering community and therefore simple and easy knowledge-bases for linguistic interpretation have been used. The approach is based on the author’s theorems concerning equivalence between widely used Takagi-Sugeno systems and some class of multivariate polynomials. It combines the advantages of fuzzy system theory and classical control theory. Classical control theory can be applied to modeling of dynamical plants and the controllers. They are all equivalent to the set of Takagi-Sugeno type fuzzy rules. The approach combines the best of fuzzy and conventional control theory. It enables linguistic interpretability (also called transparency) of both the plant model and the controller. In the case of linear systems and some class of nonlinear systems, engineers can in many cases directly apply well-known classical tools from the control theory both for analysis, and the design of closed-loop fuzzy control systems. Therefore the main objective of the book is to establish comprehensive and unified analytical foundations for fuzzy modeling using the Takagi-Sugeno rule scheme and their applications for fuzzy control, identification of some class of nonlinear dynamical processes and classification problem solver design.