Fuzzy Logic For The Management Of Uncertainty

Download Fuzzy Logic For The Management Of Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Logic For The Management Of Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fuzzy Logic for the Management of Uncertainty

Author: Lotfi Asker Zadeh
language: en
Publisher: Wiley-Interscience
Release Date: 1992-07-30
Fuzzy Logic for the Management of Uncertainty covers many important topics, including:" "Developments in mathematics that have paved the road for fuzzy logic;" "Deep, and of a broad perspective, exposition of virtually all approaches used in contemporary science for the representation and handling of imperfect (uncertain, imprecise, vague, ambiguous, etc.) information;" "Coverage of practically all relevant and promising directions and approaches in fuzzy logic research including LT--fuzzy logic, model theoretic approaches, intuitionistic fuzzy logic, nonmonotonic fuzzy logic, modifier fuzzy logic;" "VLSI fuzzy logic-based chips that have triggered the implementation of fuzzy logic in so many fields of science and technology;" "A broad coverage of fuzzy logic in approximate reasoning, including basic issues related to the role of fuzzy logic for approximate reasoning, analyses of various definitions of fuzzy implication that is a crucial element in fuzzy logic-based reasoning schemes,
Modeling Uncertainty with Fuzzy Logic

Author: Asli Celikyilmaz
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-04-08
The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.
Uncertainty Management with Fuzzy and Rough Sets

This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.