Fuzzy Inference System Assisted Human Aware Navigation Framework Based On Enhanced Potential Field

Download Fuzzy Inference System Assisted Human Aware Navigation Framework Based On Enhanced Potential Field PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Inference System Assisted Human Aware Navigation Framework Based On Enhanced Potential Field book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fuzzy inference system-assisted human-aware navigation framework based on enhanced potential field

Author: Shurendher Kumar Sampathkumar
language: en
Publisher: OAE Publishing Inc.
Release Date: 2024-01-13
With the advent of Autonomous Mobile Robots (AMRs) in public areas such as malls and airports, their harmonious coexistence with humans is crucial. AMRs must operate in a manner that ensures human safety, comfort, and acceptability to reduce stress. This is called Human Aware Navigation. This study introduces a framework for AMR navigation that prioritizes safety and human comfort in such environments, utilizing an enhanced Potential Field approach augmented by Fuzzy Inference Systems. To achieve a smooth AMR trajectory, the framework employs these systems based on AMR, human, and obstacle information. The proposed approach is tested across various scenarios, including complex, cluttered environments that mimic practical situations. Simulation results demonstrate that AMRs using the proposed method navigate human-rich environments safely and comfortably while mitigating common issues associated with Potential Field-based approaches, such as local minima and obstacles near the goal.
Robotic Systems: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources
language: en
Publisher: IGI Global
Release Date: 2020-01-03
Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.
Federated Learning

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”