Fuzzy Decision Analysis Multi Attribute Decision Making Approach


Download Fuzzy Decision Analysis Multi Attribute Decision Making Approach PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Decision Analysis Multi Attribute Decision Making Approach book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fuzzy Decision Analysis: Multi Attribute Decision Making Approach


Fuzzy Decision Analysis: Multi Attribute Decision Making Approach

Author: Farhad Hosseinzadeh Lotfi

language: en

Publisher: Springer Nature

Release Date: 2023-11-24


DOWNLOAD





Authored by a leading expert in the field, this book introduces an innovative methodology that harnesses the power of fuzzy logic to enhance decision-making in multi-attribute scenarios. In a world of complexity and uncertainty, effective decision-making is paramount. Springer proudly presents a cutting-edge publication that revolutionizes decision analysis: "Fuzzy Decision Analysis: Multi-attribute Decision-Making Approach." This book stands at the forefront of decision analysis, introducing the integration of fuzzy logic into multi-attribute decision-making. It is a transformative journey into the realm of advanced decision analysis. It book not only equips you with the knowledge to comprehend the theoretical underpinnings but also empowers you to apply these insights in practical scenarios. This book serves as your indispensable companion. Its comprehensive coverage serves as a beacon, guiding you through the intricate maze of fuzzy logic and multi-attribute decision-making, ultimately empowering you to embrace innovation and master the art of making well-informed decisions in an ever-changing world.

Uncertain Multi-Attribute Decision Making


Uncertain Multi-Attribute Decision Making

Author: Zeshui Xu

language: en

Publisher: Springer

Release Date: 2016-10-06


DOWNLOAD





This book introduces methods for uncertain multi-attribute decision making including uncertain multi-attribute group decision making and their applications to supply chain management, investment decision making, personnel assessment, redesigning products, maintenance services, military system efficiency evaluation. Multi-attribute decision making, also known as multi-objective decision making with finite alternatives, is an important component of modern decision science. The theory and methods of multi-attribute decision making have been extensively applied in engineering, economics, management and military contexts, such as venture capital project evaluation, facility location, bidding, development ranking of industrial sectors and so on. Over the last few decades, great attention has been paid to research on multi-attribute decision making in uncertain settings, due to the increasing complexity and uncertainty of supposedly objective aspects and the fuzziness of human thought. This book can be used as a reference guide for researchers and practitioners working in e.g. the fields of operations research, information science, management science and engineering. It can also be used as a textbook for postgraduate and senior undergraduate students.

Multiple Attribute Decision Making


Multiple Attribute Decision Making

Author: Ching-Lai Hwang

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This mono graph is intended for an advanced undergraduate or graduate course as weIl as for the researchers who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous work entitled "Multiple Objective Decision Making--Methods and Applications: A State-of-the-Art Survey," (No. 164 of the Lecture Notes). The literature on methods and applications of Multiple Attribute Decision Making (MADM) has been reviewed and classified systematically. This study provides readers with a capsule look into the existing methods, their char acteristics, and applicability to analysis of MADM problems. The basic MADM concepts are defined and a standard notation is introduced in Part 11. Also introduced are foundations such as models for MADM, trans formation of attributes, fuzzy decision rules, and methods for assessing weight. A system of classifying seventeen major MADM methods is presented. These methods have been proposed by researchers in diversified disciplines; half of them are classical ones, but the other half have appeared recently. The basic concept, the computational procedure, and the characteristics of each of these methods are presented concisely in Part 111. The computational procedure of each method is illustrated by solving a simple numerical example. Part IV of the survey deals with the applications of these MADM methods.