Fuzzy Algorithms With Applications To Image Processing And Pattern Recognition

Download Fuzzy Algorithms With Applications To Image Processing And Pattern Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Algorithms With Applications To Image Processing And Pattern Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fuzzy Algorithms: With Applications To Image Processing And Pattern Recognition

Contents:Introduction:Basic Concepts of Fuzzy SetsFuzzy RelationsFuzzy Models for Image Processing and Pattern RecognitionMembership Functions:IntroductionHeuristic SelectionsClustering ApproachesTuning of Membership FunctionsConcluding RemarksOptimal Image Thresholding:IntroductionThreshold Selection Based on Statistical Decision TheoryNon-fuzzy Thresholding AlgorithmsFuzzy Thresholding AlgorithmUnified Formulation of Three Thresholding AlgorithmsMultilevel ThresholdingApplicationsConcluding RemarksFuzzy Clustering:IntroductionC-Means AlgorithmFuzzy C-Means AlgorithmComparison between Hard and Fuzzy Clustering AlgorithmsCluster ValidityApplicationsConcluding RemarksLine Pattern Matching:IntroductionSimilarity Measures between Line SegmentsBasic Matching AlgorithmDealing with Noisy PatternsDealing with Rotated PatternsApplicationsConcluding RemarksFuzzy Rule-based Systems:IntroductionLearning from ExamplesDecision Tree ApproachFuzzy Aggregation Network ApproachMinimization of Fuzzy RulesDefuzzification and OptimizationApplicationsConcluding RemarksCombined Classifiers:IntroductionVoting SchemesMaximum Posteriori ProbabilityMultilayer Perceptron ApproachFuzzy Measures and Fuzzy IntegralsApplicationsConcluding Remarks Readership: Engineers and computer scientists. keywords:
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing

Author: James C. Bezdek
language: en
Publisher: Springer Science & Business Media
Release Date: 1999-08-31
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.
Fuzzy Image Processing and Applications with MATLAB

In contrast to classical image analysis methods that employ "crisp" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge. Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging, and video surveillance, to name a few. Many texts cover the use of crisp sets, but this book stands apart by exploring the explosion of interest and significant growth in fuzzy set image processing. The distinguished authors clearly lay out theoretical concepts and applications of fuzzy set theory and their impact on areas such as enhancement, segmentation, filtering, edge detection, content-based image retrieval, pattern recognition, and clustering. They describe all components of fuzzy, detailing preprocessing, threshold detection, and match-based segmentation. Minimize Processing Errors Using Dynamic Fuzzy Set Theory This book serves as a primer on MATLAB and demonstrates how to implement it in fuzzy image processing methods. It illustrates how the code can be used to improve calculations that help prevent or deal with imprecision—whether it is in the grey level of the image, geometry of an object, definition of an object’s edges or boundaries, or in knowledge representation, object recognition, or image interpretation. The text addresses these considerations by applying fuzzy set theory to image thresholding, segmentation, edge detection, enhancement, clustering, color retrieval, clustering in pattern recognition, and other image processing operations. Highlighting key ideas, the authors present the experimental results of their own new fuzzy approaches and those suggested by different authors, offering data and insights that will be useful to teachers, scientists, and engineers, among others.