Fundamentals Of Set And Number Theory


Download Fundamentals Of Set And Number Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Set And Number Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fundamentals of Number Theory


Fundamentals of Number Theory

Author: William J. LeVeque

language: en

Publisher: Courier Corporation

Release Date: 2014-01-05


DOWNLOAD





This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.

Fundamentals of Set and Number Theory


Fundamentals of Set and Number Theory

Author: Valeriy K. Zakharov

language: en

Publisher: Walter de Gruyter GmbH & Co KG

Release Date: 2018-02-05


DOWNLOAD





This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff’s classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff’s initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann – Bernays – Godel and Zermelo – Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo – Fraenkel set theory Compactness theorem for generalized second-order language

Fundamentals of Set and Number Theory


Fundamentals of Set and Number Theory

Author: Valeriy K. Zakharov

language: en

Publisher: Walter de Gruyter GmbH & Co KG

Release Date: 2018-02-05


DOWNLOAD





This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff’s classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff’s initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann – Bernays – Godel and Zermelo – Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo – Fraenkel set theory Compactness theorem for generalized second-order language