Fundamentals Of Electromagnetic Fields

Download Fundamentals Of Electromagnetic Fields PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Electromagnetic Fields book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Electromagnetic Field Theory Fundamentals

Author: Bhag Singh Guru
language: en
Publisher: Cambridge University Press
Release Date: 2009-07-23
Guru and Hiziroglu have produced an accessible and user-friendly text on electromagnetics that will appeal to both students and professors teaching this course. This lively book includes many worked examples and problems in every chapter, as well as chapter summaries and background revision material where appropriate. The book introduces undergraduate students to the basic concepts of electrostatic and magnetostatic fields, before moving on to cover Maxwell's equations, propagation, transmission and radiation. Chapters on the Finite Element and Finite Difference method, and a detailed appendix on the Smith chart are additional enhancements. MathCad code for many examples in the book and a comprehensive solutions set are available at www.cambridge.org/9780521830164.
Fundamentals of Electromagnetic Fields

This Book Is Designed To Present The Fundamental Concepts Of Electromagnetic Field Theory As They Relate To Modern Engineering Applications. As An Up-To-Date Reference It Can Be Used By Practicing Engineers, Or As A Text/Supplement In Standard University Courses In Electromagnetics Or Electromagnetic Fields Theory. The Book Has Been Designed For Self-Study With A Problem-Solving Approach. Numerous Examples With Complete, Worked-Out Solutions Guide The Reader Through The Concepts Under Discussion. Beginning With A Review On Vectors And Coordinate Systems, The Book Covers Basic Coulomb's Law In Vector Form Up Through The Propagation Of The Electromagnetic Wave In Wave Guides. Maxwell's Equations Which Form The Central Theme Are Developed From The Historical Approach Wherein Relevant Experimental Laws Are Gradually Introduced And Manipulated With The Help Of Steadily Increasing Knowledge Of Vector Calculus. These Equations Are Identified As And When They Occur For Static And Time Varying Fields. In The Last Two Chapters These Equations Are Then Explored In A Collective Way.
Electromagnetic Fields and Waves: Fundamentals of Engineering

Author: Sedki M. Riad
language: en
Publisher: McGraw Hill Professional
Release Date: 2019-12-27
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Understand electromagnetic field principles, engineering techniques, and applications This core introductory-level undergraduate textbook offers a solid coverage of the fundamentals of electromagnetic fields and waves. Written by two electrical engineering experts and experienced educators, the book is designed to accommodate both one and two semester curricula. Electromagnetic Fields and Waves: Fundamentals of Engineering presents detailed explanations of the topic of EM fields in a holistic fashion that integrates the math and the physics of the material with students’ realistic preparation in mind. You will learn about static and time-varying fields, wave propagation and polarization, transmission lines and waveguides, and more. Coverage includes: • An introduction to electromagnetic fields and waves • Transmission lines and wave equations • Transition to electrostatics • Electrostatic fields, electric flux, and Gauss’ law • Electric force, field, energy, and potential • Materials: conductors and dielectrics • Poisson’s and Laplace’s equations • Uniqueness theorem and graphical and numerical solutions • Magnetic fields and flux • Magnetic materials, magnetic circuits, and inductance • Time-varying fields and Faraday’s law • Wave propagation: plane waves • Wave polarization and propagation in multiple layers • Waveguides and cavity resonators • Historical review of EM scientists