Fundamentals Of Contemporary Set Theory


Download Fundamentals Of Contemporary Set Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Contemporary Set Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fundamentals of Contemporary Set Theory


Fundamentals of Contemporary Set Theory

Author: Keith J. Devlin

language: en

Publisher: Springer Science & Business Media

Release Date: 1979


DOWNLOAD





This book is intended to provide an account of those parts of contemporary set theory which are of direct relevance to other areas of pure mathematics. The intended reader is either an advanced level undergraduate, or a beginning graduate student in mathematics, or else an accomplished mathematician who desires or needs a familiarity with modern set theory. The book is written in a fairly easy going style, with a minimum of formalism (a format characteristic of contemporary set theory) " In Chapter I the basic principles of set theory are developed in a "naive" tl manner. Here the notions of "set I II union ", "intersection", "power set" I "relation" I "function" etc. are defined and discussed. One assumption in writing this chapter has been that whereas the reader may have met all of these concepts before, and be familiar with their usage, he may not have considered the various notions as forming part of the continuous development of a pure subject (namely set theory) " Consequently, our development is at the same time rigorous and fast. Chapter II develops the theory of sets proper. Starting with the naive set theory of Chapter I, we begin by asking the question "What is a set?" Attempts to give a rLgorous answer lead naturally to the axioms of set theory introduced by Zermelo and Fraenkel, which is the system taken as basic in this book.

The Joy of Sets


The Joy of Sets

Author: Keith Devlin

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book provides an account of those parts of contemporary set theory of direct relevance to other areas of pure mathematics. The intended reader is either an advanced-level mathematics undergraduate, a beginning graduate student in mathematics, or an accomplished mathematician who desires or needs some familiarity with modern set theory. The book is written in a fairly easy-going style, with minimal formalism. In Chapter 1, the basic principles of set theory are developed in a 'naive' manner. Here the notions of 'set', 'union', 'intersection', 'power set', 'rela tion', 'function', etc., are defined and discussed. One assumption in writing Chapter 1 has been that, whereas the reader may have met all of these 1 concepts before and be familiar with their usage, she may not have con sidered the various notions as forming part of the continuous development of a pure subject (namely, set theory). Consequently, the presentation is at the same time rigorous and fast.

Fundamentals of Contemporary Set Theory


Fundamentals of Contemporary Set Theory

Author: K. J. Devlin

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book is intended to provide an account of those parts of contemporary set theory which are of direct relevance to other areas of pure mathematics. The intended reader is either an advanced level undergraduate, or a beginning graduate student in mathematics, or else an accomplished mathematician who desires or needs a familiarity with modern set theory. The book is written in a fairly easy going style, with a minimum of formalism (a format characteristic of contemporary set theory) • In Chapter I the basic principles of set theory are developed in a "naive" tl manner. Here the notions of "set I II union " , "intersection", "power set" I "relation" I "function" etc. are defined and discussed. One assumption in writing this chapter has been that whereas the reader may have met all of these concepts before, and be familiar with their usage, he may not have considered the various notions as forming part of the continuous development of a pure subject (namely set theory) • Consequently, our development is at the same time rigorous and fast. Chapter II develops the theory of sets proper. Starting with the naive set theory of Chapter I, we begin by asking the question "What is a set?" Attempts to give a rLgorous answer lead naturally to the axioms of set theory introduced by Zermelo and Fraenkel, which is the system taken as basic in this book.