Fundamentals Of Artificial Intelligence


Download Fundamentals Of Artificial Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Artificial Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fundamentals of Artificial Intelligence


Fundamentals of Artificial Intelligence

Author: K.R. Chowdhary

language: en

Publisher: Springer Nature

Release Date: 2020-04-04


DOWNLOAD





Fundamentals of Artificial Intelligence introduces the foundations of present day AI and provides coverage to recent developments in AI such as Constraint Satisfaction Problems, Adversarial Search and Game Theory, Statistical Learning Theory, Automated Planning, Intelligent Agents, Information Retrieval, Natural Language & Speech Processing, and Machine Vision. The book features a wealth of examples and illustrations, and practical approaches along with the theoretical concepts. It covers all major areas of AI in the domain of recent developments. The book is intended primarily for students who major in computer science at undergraduate and graduate level but will also be of interest as a foundation to researchers in the area of AI.

Understanding Artificial Intelligence


Understanding Artificial Intelligence

Author: Ralf T. Kreutzer

language: en

Publisher: Springer Nature

Release Date: 2024-12-11


DOWNLOAD





This book on Artificial Intelligence (AI) explores its transformative potential for individuals and businesses. It covers AI basics and its applications across various industries, presenting AI as a foundational technology that will impact all aspects of life and the economy. The author emphasizes the need for responsible AI usage and introduces the concept of the "AI Journey" for businesses to leverage AI's potential. The second edition is updated with recent developments, including large language models like Aleph Alpha and ChatGPT, generative AI, affective computing, and ethical considerations. It also discusses open-source solutions, legal frameworks, and practical use cases. Recommended for leaders, decision-makers, students, professors, and anyone interested in understanding AI's future impact.

Artificial Intelligence and Machine Learning Fundamentals


Artificial Intelligence and Machine Learning Fundamentals

Author: Zsolt Nagy

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-12-12


DOWNLOAD





Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).