Fundamentals Of Advanced Mathematics V2


Download Fundamentals Of Advanced Mathematics V2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Advanced Mathematics V2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fundamentals of Advanced Mathematics V2


Fundamentals of Advanced Mathematics V2

Author: Henri Bourles

language: en

Publisher: Elsevier

Release Date: 2018-02-03


DOWNLOAD





The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for systems of linear equations (in particular of linear differential equations) to have solutions, this book presents the approaches to finding solutions to polynomial equations and to systems of linear differential equations with varying coefficients. Fundamentals of Advanced Mathematics, Volume 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves begins with the classical Galois theory and the theory of transcendental field extensions. Next, the differential side of these theories is treated, including the differential Galois theory (Picard-Vessiot theory of systems of linear differential equations with time-varying coefficients) and differentially transcendental field extensions. The treatment of analysis includes topology (using both filters and nets), topological vector spaces (using the notion of disked space, which simplifies the theory of duality), and the radon measure (assuming that the usual theory of measure and integration is known). In addition, the theory of sheaves is developed with application to the theory of distributions and the theory of hyperfunctions (assuming that the usual theory of functions of the complex variable is known). This volume is the prerequisite to the study of linear systems with time-varying coefficients from the point-of-view of algebraic analysis and the algebraic theory of nonlinear systems. - Present Galois Theory, transcendental field extensions, and Picard - Includes sections on Vessiot theory, differentially transcendental field extensions, topology, topological vector spaces, Radon measure, differential calculus in Banach spaces, sheaves, distributions, hyperfunctions, algebraic analysis, and local analysis of systems of linear differential equations

Fundamentals of Advanced Mathematics 1


Fundamentals of Advanced Mathematics 1

Author: Henri Bourles

language: en

Publisher: Elsevier

Release Date: 2017-07-10


DOWNLOAD





This precis, comprised of three volumes, of which this book is the first, exposes the mathematical elements which make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. This first volume focuses primarily on algebraic questions: categories and functors, groups, rings, modules and algebra. Notions are introduced in a general framework and then studied in the context of commutative and homological algebra; their application in algebraic topology and geometry is therefore developed. These notions play an essential role in algebraic analysis (analytico-algebraic systems theory of ordinary or partial linear differential equations). The book concludes with a study of modules over the main types of rings, the rational canonical form of matrices, the (commutative) theory of elemental divisors and their application in systems of linear differential equations with constant coefficients. - Part of the New Mathematical Methods, Systems, and Applications series - Presents the notions, results, and proofs necessary to understand and master the various topics - Provides a unified notation, making the task easier for the reader. - Includes several summaries of mathematics for engineers

Advanced Calculus (Revised Edition)


Advanced Calculus (Revised Edition)

Author: Lynn Harold Loomis

language: en

Publisher: World Scientific Publishing Company

Release Date: 2014-02-26


DOWNLOAD





An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.