Functions Of Least Gradient

Download Functions Of Least Gradient PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functions Of Least Gradient book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Functions of Least Gradient

This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient. The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler–Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge–Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems. The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.
Variational and Diffusion Problems in Random Walk Spaces

This book presents the latest developments in the theory of gradient flows in random walk spaces. A broad framework is established for a wide variety of partial differential equations on nonlocal models and weighted graphs. Within this framework, specific gradient flows that are studied include the heat flow, the total variational flow, and evolution problems of Leray-Lions type with different types of boundary conditions. With many timely applications, this book will serve as an invaluable addition to the literature in this active area of research. Variational and Diffusion Problems in Random Walk Spaces will be of interest to researchers at the interface between analysis, geometry, and probability, as well as to graduate students interested in exploring these areas.
Statistical Thermodynamics and Differential Geometry of Microstructured Materials

Author: H.Ted Davis
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Substances possessing heterogeneous microstructure on the nanometer and micron scales are scientifically fascinating and technologically useful. Examples of such substances include liquid crystals, microemulsions, biological matter, polymer mixtures and composites, vycor glasses, and zeolites. In this volume, an interdisciplinary group of researchers report their developments in this field. Topics include statistical mechanical free energy theories which predict the appearance of various microstructures, the topological and geometrical methods needed for a mathematical description of the subparts and dividing surfaces of heterogeneous materials, and modern computer-aided mathematical models and graphics for effective exposition of the salient features of microstructured materials.