Functional Estimation For Density Regression Models And Processes

Download Functional Estimation For Density Regression Models And Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functional Estimation For Density Regression Models And Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Functional Estimation For Density, Regression Models And Processes (Second Edition)

Nonparametric kernel estimators apply to the statistical analysis of independent or dependent sequences of random variables and for samples of continuous or discrete processes. The optimization of these procedures is based on the choice of a bandwidth that minimizes an estimation error and the weak convergence of the estimators is proved. This book introduces new mathematical results on statistical methods for the density and regression functions presented in the mathematical literature and for functions defining more complex models such as the models for the intensity of point processes, for the drift and variance of auto-regressive diffusions and the single-index regression models.This second edition presents minimax properties with Lp risks, for a real p larger than one, and optimal convergence results for new kernel estimators of function defining processes: models for multidimensional variables, periodic intensities, estimators of the distribution functions of censored and truncated variables, estimation in frailty models, estimators for time dependent diffusions, for spatial diffusions and for diffusions with stochastic volatility.
Functional Estimation For Density, Regression Models And Processes

This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book expounds on the construction of estimators for functionals of processes and densities, and provides asymptotic expansions and optimality properties from smooth estimators.It also presents new regular estimators for functionals of processes, compares histogram and kernel estimators, compares several new estimators for single-index models, and it examines the weak convergence of the estimators.
Nonparametric Functional Estimation and Related Topics

Author: G.G Roussas
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.