Functional Equations With Causal Operators


Download Functional Equations With Causal Operators PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functional Equations With Causal Operators book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Functional Equations with Causal Operators


Functional Equations with Causal Operators

Author: C. Corduneanu

language: en

Publisher: CRC Press

Release Date: 2002-09-05


DOWNLOAD





Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with cau

New Trends in the Applications of Differential Equations in Sciences


New Trends in the Applications of Differential Equations in Sciences

Author: Angela Slavova

language: en

Publisher: Springer Nature

Release Date: 2023-03-17


DOWNLOAD





This book convenes peer-reviewed, selected papers presented at the Ninth International Conference New Trends in the Applications of Differential Equations in Sciences (NTADES) held in Sozopol, Bulgaria, June 17–20, 2022. The works are devoted to many applications of differential equations in different fields of science. A number of phenomena in nature (physics, chemistry, biology) and in society (economics) result in problems leading to the study of linear and nonlinear differential equations, stochastic equations, statistics, analysis, numerical analysis, optimization, and more. The main topics are presented in the five parts of the book - applications in mathematical physics, mathematical biology, financial mathematics, neuroscience, and fractional analysis. In this volume, the reader will find a wide range of problems concerning recent achievements in both theoretical and applied mathematics. The main goal is to promote the exchange of new ideas and research between scientists, who develop and study differential equations, and researchers, who apply them for solving real-life problems. The book promotes basic research in mathematics leading to new methods and techniques useful for applications of differential equations. The NTADES 2022 conference was organized in cooperation with the Society of Industrial and Applied Mathematics (SIAM), the major international organization for Industrial and Applied Mathematics and for the promotion of interdisciplinary collaboration between applied mathematics and science, engineering, finance, and neuroscience.

Functional Differential Equations


Functional Differential Equations

Author: Constantin Corduneanu

language: en

Publisher: John Wiley & Sons

Release Date: 2016-03-30


DOWNLOAD





Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.