Functional Differential Operators And Equations


Download Functional Differential Operators And Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functional Differential Operators And Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Functional Differential Operators and Equations


Functional Differential Operators and Equations

Author: U.G. Kurbatov

language: en

Publisher: Springer Science & Business Media

Release Date: 1999-04-30


DOWNLOAD





This book deals with linear functional differential equations and operator theory methods for their investigation. The main topics are: the equivalence of the input-output stability of the equation Lx = &mathsf; and the invertibility of the operator L in the class of casual operators; the equivalence of input-output and exponential stability; the equivalence of the dichotomy of solutions for the homogeneous equation Lx = 0 and the invertibility of the operator L; the properties of Green's function; the independence of the stability of an equation from the norm on the space of solutions; shift invariant functional differential equations in Banach space; the possibility of the reduction of an equation of neutral type to an equation of retarded type; special full subalgebras of integral and difference operators, and operators with unbounded memory; and the analogue of Fredholm's alternative for operators with almost periodic coefficients where one-sided invertibility implies two-sided invertibility. Audience: This monograph will be of interest to students and researchers working in functional differential equations and operator theory and is recommended for graduate level courses.

Elliptic Functional Differential Equations and Applications


Elliptic Functional Differential Equations and Applications

Author: Alexander L. Skubachevskii

language: en

Publisher: Birkhäuser

Release Date: 2012-12-06


DOWNLOAD





Boundary value problems for elliptic differential-difference equations have some astonishing properties. For example, unlike elliptic differential equations, the smoothness of the generalized solutions can be broken in a bounded domain and is preserved only in some subdomains. The symbol of a self-adjoint semibounded functional differential operator can change its sign. The purpose of this book is to present for the first time general results concerning solvability and spectrum of these problems, a priori estimates and smoothness of solutions. The approach is based on the properties of elliptic operators and difference operators in Sobolev spaces. The most important features distinguishing this work are applications to different fields of science. The methods in this book are used to obtain new results regarding the solvability of nonlocal elliptic boundary value problems and the existence of Feller semigroups for multidimensional diffusion processes. Moreover, applications to control theory and aircraft and rocket technology are given. The theory is illustrated with numerous figures and examples. The book is addresssed to graduate students and researchers in partial differential equations and functional differential equations. It will also be of use to engineers in control theory and elasticity theory.

Linear Functional Equations. Operator Approach


Linear Functional Equations. Operator Approach

Author: Anatolij Antonevich

language: en

Publisher: Birkhäuser

Release Date: 2012-12-06


DOWNLOAD





In this book we shall study linear functional equations of the form m bu(x) == Lak(X)U(Qk(X)) = f(x), (1) k=l where U is an unknown function from a given space F(X) of functions on a set X, Qk: X -+ X are given mappings, ak and f are given functions. Our approach is based on the investigation of the operators given by the left-hand side of equa tion (1). In what follows such operators will be called functional operators. We will pay special attention to the spectral properties of functional operators, first of all, to invertibility and the Noether property. Since the set X, the space F(X), the mappings Qk and the coefficients ak are arbitrary, the class of operators of the form (1) is very rich and some of its individ ual representatives are related with problems arising in various areas of mathemat ics and its applications. In addition to the classical theory of functional equations, among such areas one can indicate the theory of functional-differential equations with deviating argument, the theory of nonlocal problems for partial differential equations, the theory of boundary value problems for the equation of a vibrating string and equations of mixed type, a number of problems of the general theory of operator algebras and the theory of dynamical systems, the spectral theory of au tomorphisms of Banach algebras, and other problems.