Functional Analysis I

Download Functional Analysis I PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functional Analysis I book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
I: Functional Analysis

This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.
History of Functional Analysis

History of Functional Analysis presents functional analysis as a rather complex blend of algebra and topology, with its evolution influenced by the development of these two branches of mathematics. The book adopts a narrower definition—one that is assumed to satisfy various algebraic and topological conditions. A moment of reflections shows that this already covers a large part of modern analysis, in particular, the theory of partial differential equations. This volume comprises nine chapters, the first of which focuses on linear differential equations and the Sturm-Liouville problem. The succeeding chapters go on to discuss the ""crypto-integral"" equations, including the Dirichlet principle and the Beer-Neumann method; the equation of vibrating membranes, including the contributions of Poincare and H.A. Schwarz's 1885 paper; and the idea of infinite dimension. Other chapters cover the crucial years and the definition of Hilbert space, including Fredholm's discovery and the contributions of Hilbert; duality and the definition of normed spaces, including the Hahn-Banach theorem and the method of the gliding hump and Baire category; spectral theory after 1900, including the theories and works of F. Riesz, Hilbert, von Neumann, Weyl, and Carleman; locally convex spaces and the theory of distributions; and applications of functional analysis to differential and partial differential equations. This book will be of interest to practitioners in the fields of mathematics and statistics.
Functional Analysis I

Author: Yu.I. Lyubich
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Up to a certain time the attention of mathematicians was concentrated on the study of individual objects, for example, specific elementary functions or curves defined by special equations. With the creation of the method of Fourier series, which allowed mathematicians to work with 'arbitrary' functions, the individual approach was replaced by the 'class' approach, in which a particular function is considered only as an element of some 'function space'. More or less simultane ously the development of geometry and algebra led to the general concept of a linear space, while in analysis the basic forms of convergence for series of functions were identified: uniform, mean square, pointwise and so on. It turns out, moreover, that a specific type of convergence is associated with each linear function space, for example, uniform convergence in the case of the space of continuous functions on a closed interval. It was only comparatively recently that in this connection the general idea of a linear topological space (L TS)l was formed; here the algebraic structure is compatible with the topological structure in the sense that the basic operations (addition and multiplication by a scalar) are continuous.