Functional Analysis And Optimization Methods In Hadron Physics

Download Functional Analysis And Optimization Methods In Hadron Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functional Analysis And Optimization Methods In Hadron Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Functional Analysis and Optimization Methods in Hadron Physics

This book begins with a brief historical review of the early applications of standard dispersion relations in particle physics. It then presents the modern perspective within the Standard Model, emphasizing the relation of analyticity together with alternative tools applied to strong interactions, such as perturbative and lattice quantum chromodynamics (QCD), as well as chiral perturbation theory. The core of the book argues that, in order to improve the prediction of specific hadronic observables, it is often necessary to resort to methods of complex analysis more sophisticated than the simple Cauchy integral. Accordingly, a separate mathematical chapter is devoted to solving several functional analysis optimization problems. Their applications to physical amplitudes and form factors are discussed in the following chapters, which also demonstrate how to merge the analytic approach with statistical analysis tools. Given its scope, the book offers a valuableguide for researchers working in precision hadronic physics, as well as graduate students who are new to the field.
Hadron Form Factors

This book introduces the phenomenology and theory of hadron form factors in a consistent manner, deriving step-by-step the key equations, defining the form factors from the matrix elements of hadronic transitions and deriving their symmetry relations. Explained are several general concepts of particle theory and phenomenology exemplified by hadron form factors. The main emphasis here is on learning the analytical methods in particle phenomenology. Many examples of hadronic processes involving form factors are considered, from the pion electromagnetic scattering to heavy B-meson decays. In the second part of the book, modern techniques of the form factor calculation, based on the method of sum rules in the theory of strong interactions, quantum chromodynamics, are introduced in an accessible manner. This book will be a useful guide for graduate students and early-career researchers working in the field of particle phenomenology and experiments. Features: • The first book to address the phenomenology of hadron form factors at a pedagogical level in one coherent volume • Contains up-to-date descriptions of the most important form factors of the electroweak transitions investigated in particle physics experiments
Dynamics of Extended Celestial Bodies And Rings

Taking both a theoretical and observational perspective, this book is an introduction to recent developments in the field of celestial mechanics. It emphasizes the application to extended celestial bodies and devotes much attention to rotational aspects. In particular, it explains the state of art for accurate modelling of the rotation of celestial bodies such as the Earth, the Moon, and Mercury, which involves principles related to hydrodynamics and geodesy. Comparisons between the light curves of the asteroids and their rotational state are made and spatial techniques leading to the determination of the Earth's gravitational field are explained. Also, the book provides a general overview of the collisional processes in the solar system and of the dynamics of the rings. It is addressed to graduate students and researchers in space sciences and celestial dynamics.