Frontiers In Fractional Calculus


Download Frontiers In Fractional Calculus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Frontiers In Fractional Calculus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Frontiers in Fractional Calculus


Frontiers in Fractional Calculus

Author: Sachin Bhalekar

language: en

Publisher: Bentham Science Publishers

Release Date: 2018-03-21


DOWNLOAD





This book brings together eleven topics on different aspects of fractional calculus in a single volume. It provides readers the basic knowledge of fractional calculus and introduces advanced topics and applications. The information in the book is presented in four parts: 1. Fractional Diffusion Equations: (i) solutions of fractional diffusion equations using wavelet methods, (ii) the maximum principle for time fractional diffusion equations, (iii) nonlinear sub-diffusion equations. 2. Mathematical Analysis: (i) shifted Jacobi polynomials for solving and identifying coupled fractional delay differential equations, (ii) the monotone iteration principle in the theory of Hadamard fractional delay differential equations, (iii) dynamics of fractional order modified Bhalekar-Gejji System, (iv) Grunwald-Letnikov derivatives. 3. Computational Techniques: GPU computing of special mathematical functions used in fractional calculus. 4. Reviews: (i) the popular iterative method NIM, (ii) fractional derivative with non-singular kernels, (iii) some open problems in fractional order nonlinear system This is a useful reference for researchers and graduate level mathematics students seeking knowledge about of fractional calculus and applied mathematics.

Fractal Physiology


Fractal Physiology

Author: James B Bassingthwaighte

language: en

Publisher: Springer

Release Date: 2013-05-27


DOWNLOAD





I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.

Theory and Numerical Approximations of Fractional Integrals and Derivatives


Theory and Numerical Approximations of Fractional Integrals and Derivatives

Author: Changpin Li

language: en

Publisher: SIAM

Release Date: 2019-10-31


DOWNLOAD





Due to its ubiquity across a variety of fields in science and engineering, fractional calculus has gained momentum in industry and academia. While a number of books and papers introduce either fractional calculus or numerical approximations, no current literature provides a comprehensive collection of both topics. This monograph introduces fundamental information on fractional calculus, provides a detailed treatment of existing numerical approximations, and presents an inclusive review of fractional calculus in terms of theory and numerical methods and systematically examines almost all existing numerical approximations for fractional integrals and derivatives. The authors consider the relationship between the fractional Laplacian and the Riesz derivative, a key component absent from other related texts, and highlight recent developments, including their own research and results. The core audience spans several fractional communities, including those interested in fractional partial differential equations, the fractional Laplacian, and applied and computational mathematics. Advanced undergraduate and graduate students will find the material suitable as a primary or supplementary resource for their studies.